The ever increasing number of mobile devices in Smart Cities and their heavy use, not only for personal communication but also as a distributed network of sensors, generate a data deluge that stresses the traditional wireless communication infrastructure. The opportunistic networking paradigm seems particularly well suited to the Smart City scenario because it exploits resources that temporarily fall into the connection range of mobile devices as communication proxies, thereby providing cheaper and more energy efficient alternatives to the use of the cellular city network and actively contributing to its offloading. However, its efficacy highly depends on the effectiveness of discovering and using those resources. To improve the effectiveness of opportunistic networking in Smart Cities, we propose a solution which exploits a prediction model tailored for the urban environment that, by detecting complex recurring patterns in nodes' contacts, can forecast the future availability of strategic communication resources. Experimental results obtained in a simulated environment show that our solution can improve the dissemination process and ease the access to the wired network infrastructure.

Mobility Pattern Prediction to Support Opportunistic Networking in Smart Cities

MORELLI, Alessandro;STEFANELLI, Cesare;TORTONESI, Mauro;
2013

Abstract

The ever increasing number of mobile devices in Smart Cities and their heavy use, not only for personal communication but also as a distributed network of sensors, generate a data deluge that stresses the traditional wireless communication infrastructure. The opportunistic networking paradigm seems particularly well suited to the Smart City scenario because it exploits resources that temporarily fall into the connection range of mobile devices as communication proxies, thereby providing cheaper and more energy efficient alternatives to the use of the cellular city network and actively contributing to its offloading. However, its efficacy highly depends on the effectiveness of discovering and using those resources. To improve the effectiveness of opportunistic networking in Smart Cities, we propose a solution which exploits a prediction model tailored for the urban environment that, by detecting complex recurring patterns in nodes' contacts, can forecast the future availability of strategic communication resources. Experimental results obtained in a simulated environment show that our solution can improve the dissemination process and ease the access to the wired network infrastructure.
2013
9781936968947
SMART CITIES; mobile computing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2005612
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact