One of the advantages of partition-of-unity FEMs, like the extended FEM, is the ability of modeling discontinuities independent of the mesh structure. The enrichment of the element functional space with discontinuous or non-differentiable functions requires, when the element stiffness is computed, partitioning into subdomains for quadrature. However, the arbitrary intersection between the base mesh and the discontinuity plane generates quadrature subdomains of complex shape. This is particularly true in three-dimensional problems, where quite sophisticate methodologies have been presented in the literature for the element stiffness evaluation.The present work addresses the problem of Heaviside function enrichments and is based on the replacement of the discontinuous enrichment function with the limit of an equivalent polynomial defined on the entire element domain. This allows for the use of standard Gaussian quadrature in the elements crossed by the discontinuity. The work redefines conceptually the first version of the equivalent polynomial methodology introduced in 2006, allowing a much broader applicability. As a consequence, equivalent polynomials can be computed for all continuum element families in one, two, and three dimensions.
Equivalent polynomials for quadrature in Heaviside function enriched elements
BENVENUTI, ElenaUltimo
2015
Abstract
One of the advantages of partition-of-unity FEMs, like the extended FEM, is the ability of modeling discontinuities independent of the mesh structure. The enrichment of the element functional space with discontinuous or non-differentiable functions requires, when the element stiffness is computed, partitioning into subdomains for quadrature. However, the arbitrary intersection between the base mesh and the discontinuity plane generates quadrature subdomains of complex shape. This is particularly true in three-dimensional problems, where quite sophisticate methodologies have been presented in the literature for the element stiffness evaluation.The present work addresses the problem of Heaviside function enrichments and is based on the replacement of the discontinuous enrichment function with the limit of an equivalent polynomial defined on the entire element domain. This allows for the use of standard Gaussian quadrature in the elements crossed by the discontinuity. The work redefines conceptually the first version of the equivalent polynomial methodology introduced in 2006, allowing a much broader applicability. As a consequence, equivalent polynomials can be computed for all continuum element families in one, two, and three dimensions.File | Dimensione | Formato | |
---|---|---|---|
equivalent polynomials for quadrature in Heaviside function enriched elements.2015.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11392_1981812_PRE_Benvenuti.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
318.9 kB
Formato
Adobe PDF
|
318.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.