We consider a generalization of the Boussinesq equation obtained by adding a term of the form a(t,x,u)∂3xu . We prove local in time well-posedness of the Cauchy problem in Sobolev spaces under a suitable decay condition on the real part of the coefficient a(t,x,u), as x→∞.

Well-posedness for a generalized boussinesq equation

ASCANELLI, Alessia
;
BOITI, Chiara
2015

Abstract

We consider a generalization of the Boussinesq equation obtained by adding a term of the form a(t,x,u)∂3xu . We prove local in time well-posedness of the Cauchy problem in Sobolev spaces under a suitable decay condition on the real part of the coefficient a(t,x,u), as x→∞.
2015
978-3-319-12576-3
978-3-319-12577-0
Boussinesq equation, Non-linear evolution equations, Well-posedness in Sobolev spaces
File in questo prodotto:
File Dimensione Formato  
ABboussinesq.pdf

solo gestori archivio

Descrizione: Reprint dell'articolo
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 275.31 kB
Formato Adobe PDF
275.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1931412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact