This paper studies Newtonian Sobolev-Lorentz spaces. We prove that these spaces are Banach. We also study the global p, q-capacity and the p, q-modulus of families of rectifiable curves. Under some additional assumptions (that is, X carries a doubling measure and a weak Poincaré inequality), we show that when 1 ≤ q < p the Lipschitz functions are dense in those spaces; moreover, in the same setting we show that the p, q-capacity is Choquet provided that q > 1. We also provide a counterexample to the density result in the Euclidean setting when 1<p≤ n and q =∞. © 2013 University of Illinois.

NEWTONIAN LORENTZ METRIC SPACES

MIRANDA, Michele
2012

Abstract

This paper studies Newtonian Sobolev-Lorentz spaces. We prove that these spaces are Banach. We also study the global p, q-capacity and the p, q-modulus of families of rectifiable curves. Under some additional assumptions (that is, X carries a doubling measure and a weak Poincaré inequality), we show that when 1 ≤ q < p the Lipschitz functions are dense in those spaces; moreover, in the same setting we show that the p, q-capacity is Choquet provided that q > 1. We also provide a counterexample to the density result in the Euclidean setting when 1
2012
S., Costea; Miranda, Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1912014
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact