Molecular switches based on the N-alkylated indanylidenepyrroline (NAIP) framework mimic some of the outstanding double bond photoisomerization properties of retinal Schiff bases in rhodopsin, most notably, the occurrence of vibrational coherences in the excited and photoproduct ground states. Focusing on the zwitterionic NAIP switch and using broadband transient absorption spectroscopy, our previous investigation of the Z to E photoisomerization dynamics is now extended to the study of the backward E to Z photoisomerization and to the role of the solvent on the vibrational coherence accompanying the photoreaction. Despite very similar signatures of excited-state vibrational coherence and similar isomerization times, the backward reaction has a significantly smaller isomerization yield than the forward reaction, and most interestingly, does not display ground state coherences. This indicates that both the quantum yield and vibrational dephasing depend critically on the photochemical reaction path followed to reach the ground potential energy surface. In addition, investigation of the effect of the solvent viscosity shows that vibrational dephasing is mainly an intramolecular process.

Isomer-dependent vibrational coherence in ultrafast photoisomerization

ZANIRATO, Vinicio;
2013

Abstract

Molecular switches based on the N-alkylated indanylidenepyrroline (NAIP) framework mimic some of the outstanding double bond photoisomerization properties of retinal Schiff bases in rhodopsin, most notably, the occurrence of vibrational coherences in the excited and photoproduct ground states. Focusing on the zwitterionic NAIP switch and using broadband transient absorption spectroscopy, our previous investigation of the Z to E photoisomerization dynamics is now extended to the study of the backward E to Z photoisomerization and to the role of the solvent on the vibrational coherence accompanying the photoreaction. Despite very similar signatures of excited-state vibrational coherence and similar isomerization times, the backward reaction has a significantly smaller isomerization yield than the forward reaction, and most interestingly, does not display ground state coherences. This indicates that both the quantum yield and vibrational dephasing depend critically on the photochemical reaction path followed to reach the ground potential energy surface. In addition, investigation of the effect of the solvent viscosity shows that vibrational dephasing is mainly an intramolecular process.
2013
J., Léonard; J., Briand; S., Fusi; Zanirato, Vinicio; M., Olivucci; S., Haacke
File in questo prodotto:
File Dimensione Formato  
1367-2630_15_10_105022 New Journal of Physics.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1871123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact