We propose an eXtended Finite Element Method convergent to the asymptotic solution of a thin interface problem for both planar and curved imperfect interfaces in three dimensions. The main advantage over standard cohesive-zone models is the bulk-mesh size independence. With respect to standard eXtended Finite Element Method, in the proposed procedure, blending and quadrature sub-domains are not required. The focus is on the evaluation of the accuracy of the proposed approach in solving three-dimensional benchmark tests. The numerical results are compared with those available from analytical solutions and spring-like interface models
Variationally consistent eXtended FE model for 3D planar and curved imperfect interfaces
BENVENUTI, Elena;PONARA, Nicola;TRALLI, Antonio Michele
2013
Abstract
We propose an eXtended Finite Element Method convergent to the asymptotic solution of a thin interface problem for both planar and curved imperfect interfaces in three dimensions. The main advantage over standard cohesive-zone models is the bulk-mesh size independence. With respect to standard eXtended Finite Element Method, in the proposed procedure, blending and quadrature sub-domains are not required. The focus is on the evaluation of the accuracy of the proposed approach in solving three-dimensional benchmark tests. The numerical results are compared with those available from analytical solutions and spring-like interface modelsFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.