The abnormal expression of several microRNAs has a causal role in tumorigenesis with either antineoplastic or oncogenic functions. Here we demonstrated that miR-126 and miR-126* play a tumor suppressor role in human melanoma through the direct or indirect repression of several key oncogenic molecules. The expression levels of miR-126&126* were elevated in normal melanocytes and primary melanoma cell lines, whereas they markedly declined in metastatic cells. Indeed, the restored expression of miR-126&126* in two advanced melanoma cell lines was accompanied by a significant reduction of proliferation, invasion and chemotaxis in vitro as well as of growth and dissemination in vivo. In accordance, the reverse functional effects were obtained by knocking down miR-126&126* by transfecting antisense LNA oligonucleotides in melanoma cells. Looking for the effectors of these antineoplastic functions, we identified ADAM9 and MMP7, two metalloproteases playing a pivotal role in melanoma progression, as direct targets of miR-126&126*. In addition, as ADAM9 and MMP7 share a role in the proteolytic cleavage of the HB-EGF precursor, we looked for the effectiveness of this regulatory pathway in melanoma, confirming the decrease of HB-EGF activation as a consequence of miR-126&126*-dependent downmodulation of ADAM9 and MMP7. Finally, gene profile analyses showed that miR-126&126* reexpression was sufficient to inactivate other key signaling pathways involved in the oncogenic transformation, as PI3K/AKT and MAPK, and to restore melanogenesis, as indicated by KIT/MITF/TYR induction. In view of this miR-126&126* wide-ranging action, we believe that the replacement of these microRNAs might be considered a promising therapeutic approach.

miR-126&126* Restored Expressions Play a Tumor Suppressor Role by Directly Regulating ADAM9 and MMP7 in Melanoma

NEGRINI, Massimo;FERRACIN, Manuela;
2013

Abstract

The abnormal expression of several microRNAs has a causal role in tumorigenesis with either antineoplastic or oncogenic functions. Here we demonstrated that miR-126 and miR-126* play a tumor suppressor role in human melanoma through the direct or indirect repression of several key oncogenic molecules. The expression levels of miR-126&126* were elevated in normal melanocytes and primary melanoma cell lines, whereas they markedly declined in metastatic cells. Indeed, the restored expression of miR-126&126* in two advanced melanoma cell lines was accompanied by a significant reduction of proliferation, invasion and chemotaxis in vitro as well as of growth and dissemination in vivo. In accordance, the reverse functional effects were obtained by knocking down miR-126&126* by transfecting antisense LNA oligonucleotides in melanoma cells. Looking for the effectors of these antineoplastic functions, we identified ADAM9 and MMP7, two metalloproteases playing a pivotal role in melanoma progression, as direct targets of miR-126&126*. In addition, as ADAM9 and MMP7 share a role in the proteolytic cleavage of the HB-EGF precursor, we looked for the effectiveness of this regulatory pathway in melanoma, confirming the decrease of HB-EGF activation as a consequence of miR-126&126*-dependent downmodulation of ADAM9 and MMP7. Finally, gene profile analyses showed that miR-126&126* reexpression was sufficient to inactivate other key signaling pathways involved in the oncogenic transformation, as PI3K/AKT and MAPK, and to restore melanogenesis, as indicated by KIT/MITF/TYR induction. In view of this miR-126&126* wide-ranging action, we believe that the replacement of these microRNAs might be considered a promising therapeutic approach.
2013
Nadia, Felli; Federica, Felicetti; Anna Maria, Lustri; M., Cristina Errico; Lisabianca, Bottero; Alessio, Cannistraci; Alessandra De, Feo; Marina, Pet...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1859513
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 84
social impact