We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 angstrom, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27 multiple images of nine systems are used to tightly constrain the inner mass profile gradient, d log Sigma/d log r similar or equal to -0.6 +/- 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap (similar to 0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fitted by a Navarro-Frenk-White profile with M-vir = (5.37(-0.63)(+0.70) +/- 0.26) x 10(14) M-circle dot h(-1) and a relatively high concentration, c(vir) = 8.77(-0.42)(+0.44) +/- 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r(E) similar or equal to 16 +/- 2 '' (for z(s) = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray-selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias.

THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE (CLASH): STRONG-LENSING ANALYSIS OF A383 FROM 16-BAND HST/WFC3/ACS IMAGING

ROSATI, Piero;
2011

Abstract

We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 angstrom, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27 multiple images of nine systems are used to tightly constrain the inner mass profile gradient, d log Sigma/d log r similar or equal to -0.6 +/- 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap (similar to 0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fitted by a Navarro-Frenk-White profile with M-vir = (5.37(-0.63)(+0.70) +/- 0.26) x 10(14) M-circle dot h(-1) and a relatively high concentration, c(vir) = 8.77(-0.42)(+0.44) +/- 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r(E) similar or equal to 16 +/- 2 '' (for z(s) = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray-selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias.
2011
Zitrin, A; Broadhurst, T; Coe, D; Umetsu, K; Postman, M; Benitez, N; Meneghetti, M; Medezinski, E; Jouvel, S; Bradley, L; Koekemoer, A; Zheng, W; Ford, H; Merten, J; Kelson, D; Lahav, O; Lemze, D; Molino, A; Nonino, M; Donahue, M; Rosati, Piero; Van der Wel, A; Bartelmann, M; Bouwens, R; Graur, O; Graves, G; Host, O; Infante, L; Jha, S; Jimenez Teja, Y; Lazkoz, R; Maoz, D; Mccully, C; Melchior, P; Moustakas, La; Ogaz, S; Patel, B; Regoes, E; Riess, A; Rodney, S; Seitz, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1853959
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 61
social impact