This work deals with the solution of image restoration problems by an iterative regularization method based on the Bregman iteration. Any iteration of this scheme requires to exactly compute the minimizer of a function. However, in some image reconstruction applications, it is either impossible or extremely expensive to obtain exact solutions of these subproblems. In this paper, we propose an inexact version of the iterative procedure, where the inexactness in the inner subproblem solution is controlled by a criterion that preserves the convergence of the Bregman iteration and its features in image restoration problems. In particular, the method allows to obtain accurate reconstructions also when only an overestimation of the regularization parameter is known. The introduction of the inexactness in the iterative scheme allows to address image reconstruction problems from data corrupted by Poisson noise, exploiting the recent advances about specialized algorithms for the numerical minimization of the generalized Kullback--Leibler divergence combined with a regularization term. The results of several numerical experiments enable to evaluate the proposed scheme for image deblurring or denoising in presence of Poisson noise.
Inexact Bregman iteration with an application to Poisson data reconstruction
BENFENATI, Alessandro;RUGGIERO, Valeria
2013
Abstract
This work deals with the solution of image restoration problems by an iterative regularization method based on the Bregman iteration. Any iteration of this scheme requires to exactly compute the minimizer of a function. However, in some image reconstruction applications, it is either impossible or extremely expensive to obtain exact solutions of these subproblems. In this paper, we propose an inexact version of the iterative procedure, where the inexactness in the inner subproblem solution is controlled by a criterion that preserves the convergence of the Bregman iteration and its features in image restoration problems. In particular, the method allows to obtain accurate reconstructions also when only an overestimation of the regularization parameter is known. The introduction of the inexactness in the iterative scheme allows to address image reconstruction problems from data corrupted by Poisson noise, exploiting the recent advances about specialized algorithms for the numerical minimization of the generalized Kullback--Leibler divergence combined with a regularization term. The results of several numerical experiments enable to evaluate the proposed scheme for image deblurring or denoising in presence of Poisson noise.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.