Let y (A) denote the coendomorphism left R-bialgebroid associated to a left finitely generated and projective extension of rings R → A with identities. We show that the category of left comodules over an epimorphic image of y(A) is equivalent to the category of chain complexes of left R-modules. This equivalence is monoidal whenever R is commutative and A is an R-algebra. This is a generalization, using entirely new tools, of results by Pareigis and Tambara for chain complexes of vector spaces over fields. Our approach relies heavily on the noncommutative theory of Tannaka reconstruction, and the generalized faithfully flat descent for small additive categories, or rings with enough orthogonal idempotents.

Categories of comodules and chain complexes of modules

MENINI, Claudia
Ultimo
2012

Abstract

Let y (A) denote the coendomorphism left R-bialgebroid associated to a left finitely generated and projective extension of rings R → A with identities. We show that the category of left comodules over an epimorphic image of y(A) is equivalent to the category of chain complexes of left R-modules. This equivalence is monoidal whenever R is commutative and A is an R-algebra. This is a generalization, using entirely new tools, of results by Pareigis and Tambara for chain complexes of vector spaces over fields. Our approach relies heavily on the noncommutative theory of Tannaka reconstruction, and the generalized faithfully flat descent for small additive categories, or rings with enough orthogonal idempotents.
2012
A., Ardizzoni; L., El Kaoutit; Menini, Claudia
File in questo prodotto:
File Dimensione Formato  
27-CategComodChain.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 427.06 kB
Formato Adobe PDF
427.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1004.4572.pdf

accesso aperto

Descrizione: versione pre print
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 420.52 kB
Formato Adobe PDF
420.52 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1753898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact