Starting from the infinitesimal point of view, the need to enlarge the Hamiltonian principle for Hamiltonian dynamics is analysed. So-called Lagrangian transformations are introduced to demonstrate the complete equivalence, not only of the Lagrangian and Hamiltonian equations of motion, but also of the corresponding formalisms. It is shown that the superiority of the Hamiltonian formalism lies exclusively in the passage from infinitesimal transformation generators to one-parameter subgroups of canonical transformation, since the passage preserves most of the properties acquired at the infinitesimal level.

Infinitesimal transformations and equivalence of the Lagrangian and Hamiltonian descriptions

PASSERINI, Arianna;BREGOLA, Mauro;CALLEGARI, Gimmi;FERRARIO, Carlo
1993

Abstract

Starting from the infinitesimal point of view, the need to enlarge the Hamiltonian principle for Hamiltonian dynamics is analysed. So-called Lagrangian transformations are introduced to demonstrate the complete equivalence, not only of the Lagrangian and Hamiltonian equations of motion, but also of the corresponding formalisms. It is shown that the superiority of the Hamiltonian formalism lies exclusively in the passage from infinitesimal transformation generators to one-parameter subgroups of canonical transformation, since the passage preserves most of the properties acquired at the infinitesimal level.
1993
Passerini, Arianna; Bregola, Mauro; Callegari, Gimmi; Ferrario, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1728500
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact