The ability of adenosine agonists to modulate the electrically evoked release of acetylcholine (ACh) from [3H]choline preloaded guinea-pig superior cervical ganglia (SCG) was investigated. The adenosine A1-receptor selective agonist N6-cyclohexyladenosine (CHA) and 2-chloroadenosine (2-CADO) inhibited the evoked transmitter release, the effect being reversed by the A1-receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), and by sulmazole (SUL), which blocks both the A1-receptor and the adenylate cyclase inhibitory regulator Gi. In whole ganglia, CHA decreased both the basal and the forskolin (FSK)-stimulated cyclic AMP synthesis. The latter effect was again prevented by the A1 antagonist DPCPX. These results are compatible with the existence, in the guinea-pig SCG, of adenosine A1-receptors, part of which are located on the presynaptic nerve terminals mediating an inhibition of ACh release. © 1995.

The ability of adenosine agonists to modulate the electrically evoked release of acetylcholine (ACh) from [3H]choline preloaded guinea-pig superior cervical ganglia (SCG) was investigated. The adenosine A1-receptor selective agonist N6-cyclohexyladenosine (CHA) and 2-chloroadenosine (2-CADO) inhibited the evoked transmitter release, the effect being reversed by the A1-receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), and by sulmazole (SUL), which blocks both the A1-receptor and the adenylate cyclase inhibitory regulator Gi. In whole ganglia, CHA decreased both the basal and the forskolin (FSK)-stimulated cyclic AMP synthesis. The latter effect was again prevented by the A1 antagonist DPCPX. These results are compatible with the existence, in the guinea-pig SCG, of adenosine A1-receptors, part of which are located on the presynaptic nerve terminals mediating an inhibition of ACh release.

Adenosine analogs inhibit acetylcholine release and cyclic AMP synthesis in the guinea-pig superior cervical ganglion

Borasio PG
Primo
;
PAVAN, Barbara
Secondo
;
Fabbri E;
1995

Abstract

The ability of adenosine agonists to modulate the electrically evoked release of acetylcholine (ACh) from [3H]choline preloaded guinea-pig superior cervical ganglia (SCG) was investigated. The adenosine A1-receptor selective agonist N6-cyclohexyladenosine (CHA) and 2-chloroadenosine (2-CADO) inhibited the evoked transmitter release, the effect being reversed by the A1-receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), and by sulmazole (SUL), which blocks both the A1-receptor and the adenylate cyclase inhibitory regulator Gi. In whole ganglia, CHA decreased both the basal and the forskolin (FSK)-stimulated cyclic AMP synthesis. The latter effect was again prevented by the A1 antagonist DPCPX. These results are compatible with the existence, in the guinea-pig SCG, of adenosine A1-receptors, part of which are located on the presynaptic nerve terminals mediating an inhibition of ACh release.
1995
Borasio, Pg; Pavan, Barbara; Fabbri, E; Ginanni Corradini, F; Arcelli, D; Poli, A.
File in questo prodotto:
File Dimensione Formato  
Borasioetal1995.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 430.58 kB
Formato Adobe PDF
430.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1721901
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact