All the geological constraints for an exhaustive reconstruction of the Triassic to Tertiary tectonic history of the southern Dinaric-Hellenic belt can be found in Albania and Greece. This article aims to schematically reconstruct this long tectonic evolution primarily based on a detailed analysis of the tectonic setting, the stratigraphy, the geochemistry, and the age of the ophiolites. In contrast to what was previously reported in the literature, we propose a new subdivision on a regional scale of the ophiolite complexes cropping out in Albania and Greece. This new subdivision includes six types of ophiolite occurrences, each corresponding to different tectonic units derived from a single obducted sheet. These units are represented by: (1) subophiolite mélange, (2) Triassic ocean-floor ophiolites, (3) metamorphic soles, (4) Jurassic fore-arc ophiolites, (5) Jurassic intra-oceanic-arc ophiolites, and (6) Jurassic back-arc basin ophiolites. The overall features of these ophiolites are coherent with the existence of a single, though composite, oceanic basin located east of the Adria/Pelagonian continental margin. This oceanic basin was originated during the Middle Triassic and was subsequently (Early Jurassic) affected by an east-dipping intra-oceanic subduction. This subduction was responsible for the birth of intra-oceanic-arc and back-arc oceanic basins separated by a continental volcanic arc during the Early to Middle Jurassic. From the uppermost Middle Jurassic to the Early Cretaceous, an obduction developed, during which the ophiolites were thrust westwards firstly onto the neighboring oceanic lithosphere and then onto the Adria margin.

Geodynamic evolution of the ophiolites from Albania and Greece (Dinaric-Hellenic belt): One, two or more oceanic basins?

SACCANI, Emilio
2013

Abstract

All the geological constraints for an exhaustive reconstruction of the Triassic to Tertiary tectonic history of the southern Dinaric-Hellenic belt can be found in Albania and Greece. This article aims to schematically reconstruct this long tectonic evolution primarily based on a detailed analysis of the tectonic setting, the stratigraphy, the geochemistry, and the age of the ophiolites. In contrast to what was previously reported in the literature, we propose a new subdivision on a regional scale of the ophiolite complexes cropping out in Albania and Greece. This new subdivision includes six types of ophiolite occurrences, each corresponding to different tectonic units derived from a single obducted sheet. These units are represented by: (1) subophiolite mélange, (2) Triassic ocean-floor ophiolites, (3) metamorphic soles, (4) Jurassic fore-arc ophiolites, (5) Jurassic intra-oceanic-arc ophiolites, and (6) Jurassic back-arc basin ophiolites. The overall features of these ophiolites are coherent with the existence of a single, though composite, oceanic basin located east of the Adria/Pelagonian continental margin. This oceanic basin was originated during the Middle Triassic and was subsequently (Early Jurassic) affected by an east-dipping intra-oceanic subduction. This subduction was responsible for the birth of intra-oceanic-arc and back-arc oceanic basins separated by a continental volcanic arc during the Early to Middle Jurassic. From the uppermost Middle Jurassic to the Early Cretaceous, an obduction developed, during which the ophiolites were thrust westwards firstly onto the neighboring oceanic lithosphere and then onto the Adria margin.
2013
V., Bortolotti; M., Chiari; M., Marroni; L., Pandolfi; G., Principi; Saccani, Emilio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1721096
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 110
social impact