We perform amplitude analyses of the decays $B^0 \to K^+K^-K^0_S$, $B^+ \rightarrow K^+K^-K^+$, and $B^+ \to K^0_S K^0_S K^+$, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately $470\times 10^6$ $B\bar{B}$ decays, collected with the BABAR detector at the PEP-II asymmetric-energy $B$ factory at the SLAC National Accelerator Laboratory. For $B^+ \to K^+K^-K^+$, we find a direct CP asymmetry in $B^+ \to \phi(1020)K^+$ of $A_{CP}= (12.8\pm 4.4 \pm 1.3)%$, which differs from zero by $2.8 \sigma$. For $B^0 \to K^+K^-K^0_S$, we measure the CP-violating phase $\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ$. For $B^+ \to K^0_S K^0_S K^+$, we measure an overall direct CP asymmetry of $A_{CP} = (4 ^{+4}_{-5} \pm 2)%$. We also perform an angular-moment analysis of the three channels, and determine that the $f_X(1500)$ state can be described well by the sum of the resonances $f_0(1500)$, $f_2^{\prime}(1525)$, and $f_0(1710)$.

Study of CP violation in Dalitz-plot analyses of B-0 -> K+ (K-Ks0), B+ -> K+ K-K+, and B+ -> (KsKsK+)-K-0-K-0

BETTONI, Diego;BOZZI, Concezio;CALABRESE, Roberto;CIBINETTO, Gianluigi;FIORAVANTI, Elisa;GARZIA, Isabella;LUPPI, Eleonora;SANTORO, Valentina;
2012

Abstract

We perform amplitude analyses of the decays $B^0 \to K^+K^-K^0_S$, $B^+ \rightarrow K^+K^-K^+$, and $B^+ \to K^0_S K^0_S K^+$, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately $470\times 10^6$ $B\bar{B}$ decays, collected with the BABAR detector at the PEP-II asymmetric-energy $B$ factory at the SLAC National Accelerator Laboratory. For $B^+ \to K^+K^-K^+$, we find a direct CP asymmetry in $B^+ \to \phi(1020)K^+$ of $A_{CP}= (12.8\pm 4.4 \pm 1.3)%$, which differs from zero by $2.8 \sigma$. For $B^0 \to K^+K^-K^0_S$, we measure the CP-violating phase $\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ$. For $B^+ \to K^0_S K^0_S K^+$, we measure an overall direct CP asymmetry of $A_{CP} = (4 ^{+4}_{-5} \pm 2)%$. We also perform an angular-moment analysis of the three channels, and determine that the $f_X(1500)$ state can be described well by the sum of the resonances $f_0(1500)$, $f_2^{\prime}(1525)$, and $f_0(1710)$.
2012
Lees, Jp; Poireau, V; Tisserand, V; Tico, Jg; Grauges, E; Martinelli, M; Milanes, Da; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Brown, Dn; Kerth, ...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1690304
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 83
social impact