Cystic Fibrosis (CF) lung disease is characterised by progressive chronic infection and inflammation of the airways. This prolonged airway inflammatory response leads to irreversible lung damage and fibrosis which is believed to be driven by two distinct, coordinated events: a) a defective cystic fibrosis transmembrane regulator (CFTR) causes airway surface dehydration and increased mucus viscosity leading to chronic colonization with Pseudomonas aeruginosa (P.aeruginosa) (Boucher, 2007); b) mutated CFTR triggers the generation of pro-inflammatory and chemotactic cytokines orchestrated by bronchial epithelial cells, independently of infection (Rubin, 2007; Elizur et al., 2008). The chemokine IL-8, abundantly expressed at sites of chronic inflammation, seems to play a major role in driving the formation of neutrophil (PMN)-rich exudates into the lung of CF patients (Khan et al., 1995; Noah et al., 1997; DiMango et al., 1998; Puchelle et al., 2001; Joseph et al., 2005; Perez et al., 2007). Therefore, reduction of the exaggerated production of IL-8 is key therapeutic target in CF. Anti-inflammatory drugs are an attractive therapeutic tool in CF aimed to decrease the rate of decline in lung function. However, the inherent complexity of the inflammatory response combined with the obvious dependency on this response to contain infection and the side effect profiles of common anti-inflammatories, have made identifying the most suitable therapy a major priority. Consensus is growing on sphingolipids (SLs) as novel targets to cure pulmonary disorders including CF, since modulation of cellular ceramide reduces lung inflammation (Lahiri and Futerman, 2007; Uhlig and Gulbins, 2008). The results in the area of ceramide and CF pathophysiology are very interesting, although contradicting due to the animal models used and methods of ceramide detection (Wojewodka , 2011). The accumulation of ceramide has been identified as one of the key regulators of inflammation in CF airways in different CFTR-/- mouse models (Teichgraber, 2008). On the contrary, decreased ceramide levels have been shown in CFTR ko mice (Guibault, 2008). The possible explanation for this discrepancy seems to be the special diet required for CFTR ko mice, that severely affects the concentration of SLs. Other possible causes, such as genetic determinants, could influence individual levels of SLs (Hicks, 2009). In a different study, no significant difference has been found in basal ceramide levels in immortalised CF bronchial epithelial cells and lung homogenate from CFTR ko mice compared to wild type cells and mice (Yu, 2009). Very importantly, ceramide has been demonstrated to accumulate in the lower airways of CF patients and to be positively associated with neutrophilic inflammation (Brodlie, 2010), supporting the hypothesis that reduction of ceramide may be a therapeutic target for CF lung inflammation. Extending our previous study (Dechecchi, 2008), we have recently demonstrated that the iminosugar N-butyldeoxynojirimycin (miglustat), an inhibitor of the first step in glycosphingolipid (GSL) biosynthesis, reducing the P.aeruginosa induced immunoreactive ceramide expression, produces an anti-inflammatory effect in human bronchial epithelial cells in vitro and down-regulates the neutrophil chemotaxis in murine lungs in vivo (Dechecchi, 2011). These findings strengthen the notion that the metabolism of SLs can be manipulated as a therapeutic option for CF lung disease. With regard to new treatments for CF lung pathology, miglustat deserves great attention since it restores CFTR function in respiratory and pancreatic cells in vitro (Norez, 2006; Dechecchi, 2008) and in CF mice (Lubamba, 2009) and produces an anti-inflammatory effect in vitro and in vivo Dechecchi, 2011). Notably, miglustat is a FDA-approved and EMA−designated orally bioavailable orphan drug, used in Europe and USA for the treatment of Gaucher disease and other GSL storage diseases. In this chapter we review the pre-clinical evidence on the anti-inflammatory effect of miglustat in comparative effectiveness studies with the SL inhibitor amitriptyline and the glucocorticoid (GC) dexamethasone. Importance will be placed on the efficacy of each anti-inflammatory molecule to balance between the anti-inflammatory activity and possible impairment of the host defence.

Pharmacological Modulators of Sphingolipid Metabolism for the Treatment of Cystic Fibrosis Lung Inflammation

LAMPRONTI, Ilaria;GAMBARI, Roberto;
2012

Abstract

Cystic Fibrosis (CF) lung disease is characterised by progressive chronic infection and inflammation of the airways. This prolonged airway inflammatory response leads to irreversible lung damage and fibrosis which is believed to be driven by two distinct, coordinated events: a) a defective cystic fibrosis transmembrane regulator (CFTR) causes airway surface dehydration and increased mucus viscosity leading to chronic colonization with Pseudomonas aeruginosa (P.aeruginosa) (Boucher, 2007); b) mutated CFTR triggers the generation of pro-inflammatory and chemotactic cytokines orchestrated by bronchial epithelial cells, independently of infection (Rubin, 2007; Elizur et al., 2008). The chemokine IL-8, abundantly expressed at sites of chronic inflammation, seems to play a major role in driving the formation of neutrophil (PMN)-rich exudates into the lung of CF patients (Khan et al., 1995; Noah et al., 1997; DiMango et al., 1998; Puchelle et al., 2001; Joseph et al., 2005; Perez et al., 2007). Therefore, reduction of the exaggerated production of IL-8 is key therapeutic target in CF. Anti-inflammatory drugs are an attractive therapeutic tool in CF aimed to decrease the rate of decline in lung function. However, the inherent complexity of the inflammatory response combined with the obvious dependency on this response to contain infection and the side effect profiles of common anti-inflammatories, have made identifying the most suitable therapy a major priority. Consensus is growing on sphingolipids (SLs) as novel targets to cure pulmonary disorders including CF, since modulation of cellular ceramide reduces lung inflammation (Lahiri and Futerman, 2007; Uhlig and Gulbins, 2008). The results in the area of ceramide and CF pathophysiology are very interesting, although contradicting due to the animal models used and methods of ceramide detection (Wojewodka , 2011). The accumulation of ceramide has been identified as one of the key regulators of inflammation in CF airways in different CFTR-/- mouse models (Teichgraber, 2008). On the contrary, decreased ceramide levels have been shown in CFTR ko mice (Guibault, 2008). The possible explanation for this discrepancy seems to be the special diet required for CFTR ko mice, that severely affects the concentration of SLs. Other possible causes, such as genetic determinants, could influence individual levels of SLs (Hicks, 2009). In a different study, no significant difference has been found in basal ceramide levels in immortalised CF bronchial epithelial cells and lung homogenate from CFTR ko mice compared to wild type cells and mice (Yu, 2009). Very importantly, ceramide has been demonstrated to accumulate in the lower airways of CF patients and to be positively associated with neutrophilic inflammation (Brodlie, 2010), supporting the hypothesis that reduction of ceramide may be a therapeutic target for CF lung inflammation. Extending our previous study (Dechecchi, 2008), we have recently demonstrated that the iminosugar N-butyldeoxynojirimycin (miglustat), an inhibitor of the first step in glycosphingolipid (GSL) biosynthesis, reducing the P.aeruginosa induced immunoreactive ceramide expression, produces an anti-inflammatory effect in human bronchial epithelial cells in vitro and down-regulates the neutrophil chemotaxis in murine lungs in vivo (Dechecchi, 2011). These findings strengthen the notion that the metabolism of SLs can be manipulated as a therapeutic option for CF lung disease. With regard to new treatments for CF lung pathology, miglustat deserves great attention since it restores CFTR function in respiratory and pancreatic cells in vitro (Norez, 2006; Dechecchi, 2008) and in CF mice (Lubamba, 2009) and produces an anti-inflammatory effect in vitro and in vivo Dechecchi, 2011). Notably, miglustat is a FDA-approved and EMA−designated orally bioavailable orphan drug, used in Europe and USA for the treatment of Gaucher disease and other GSL storage diseases. In this chapter we review the pre-clinical evidence on the anti-inflammatory effect of miglustat in comparative effectiveness studies with the SL inhibitor amitriptyline and the glucocorticoid (GC) dexamethasone. Importance will be placed on the efficacy of each anti-inflammatory molecule to balance between the anti-inflammatory activity and possible impairment of the host defence.
2012
9789535102878
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1685987
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact