Ca²⁺ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP₃R) serve to discharge Ca²⁺ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP₃R isoforms and protect cells from apoptosis, reducing ER Ca²⁺ release. However, it has not been elucidated which IP₃R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP₃R I, strongly suppresses IP₃-mediated Ca²⁺ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca²⁺ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca²⁺ release. Moreover, regulating Ca²⁺ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP₃R III, leading to diminished Ca²⁺ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Data di pubblicazione: | 2012 | |
Titolo: | Selective modulation of subtype III IP₃R by Akt regulates ER Ca²⁺ release and apoptosis | |
Autori: | Marchi S; Marinello M; Bononi A; Bonora M; Giorgi C; Rimessi A; Pinton P | |
Rivista: | CELL DEATH & DISEASE | |
Abstract: | Ca²⁺ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP₃R) serve to discharge Ca²⁺ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP₃R isoforms and protect cells from apoptosis, reducing ER Ca²⁺ release. However, it has not been elucidated which IP₃R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP₃R I, strongly suppresses IP₃-mediated Ca²⁺ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca²⁺ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca²⁺ release. Moreover, regulating Ca²⁺ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP₃R III, leading to diminished Ca²⁺ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt. | |
Digital Object Identifier (DOI): | 10.1038/cddis.2012.45 | |
Handle: | http://hdl.handle.net/11392/1685769 | |
Appare nelle tipologie: | 03.1 Articolo su rivista |