The irradiation of deaerated solutions of horse heart cytochrome c causes the reduction of Fe(III) to Fe(II). The dependence of the photoreaction quantum yield on pH shows that the photoreactive species is a form of cytochrome c which contains methionine-80 and histidine-18 as heme ligands. The primary photochemical event consists of an electron transfer from the sulphur of methionine- 80 to iron. The re-oxidation of the photochemically obtained Fe(II) protein gives a Fe(III) cytochrome which exhibits a typical low-spin absorption spectrum, lacking the 695-nm band and indicating that a strong field ligand, other than methionine-80, coordinates to the sixth binding site of the heme iron. Spectrophotometric titration of the photochemically modified Fe(III) cytochrome shows that histidine- 18 remains bound in the fifth position. The substitution of methionine-80 with the more oxidizable azide ligand increases the efficiency of the intramolecular electron transfer. Azide radicals, detected by spin-trapping ESR technique, are formed in the primary act. Visible-UV spectral data indicate that histidine-18 and methionine-80 occupy the fifth and sixth position, respectively, in the photoreaction product. All the results obtained correlate well with those previously obtained in investigations concerning the photoredox behavior of iron porphyrin complexes. © 1985.

Intramolecular photoredox reactions in iron(III) cytochrome c and its azide derivative

BARTOCCI, Carlo;MALDOTTI, Andrea;CARASSITI, Vittorio;TRAVERSO, Orazio;FERRI, Albertino
1985

Abstract

The irradiation of deaerated solutions of horse heart cytochrome c causes the reduction of Fe(III) to Fe(II). The dependence of the photoreaction quantum yield on pH shows that the photoreactive species is a form of cytochrome c which contains methionine-80 and histidine-18 as heme ligands. The primary photochemical event consists of an electron transfer from the sulphur of methionine- 80 to iron. The re-oxidation of the photochemically obtained Fe(II) protein gives a Fe(III) cytochrome which exhibits a typical low-spin absorption spectrum, lacking the 695-nm band and indicating that a strong field ligand, other than methionine-80, coordinates to the sixth binding site of the heme iron. Spectrophotometric titration of the photochemically modified Fe(III) cytochrome shows that histidine- 18 remains bound in the fifth position. The substitution of methionine-80 with the more oxidizable azide ligand increases the efficiency of the intramolecular electron transfer. Azide radicals, detected by spin-trapping ESR technique, are formed in the primary act. Visible-UV spectral data indicate that histidine-18 and methionine-80 occupy the fifth and sixth position, respectively, in the photoreaction product. All the results obtained correlate well with those previously obtained in investigations concerning the photoredox behavior of iron porphyrin complexes. © 1985.
1985
Bartocci, Carlo; Maldotti, Andrea; Carassiti, Vittorio; Traverso, Orazio; Ferri, Albertino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1683139
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact