A linear viscous model for evaluating the stresses and strains produced in masonry structures over time is presented. The model is based on rigorous homogenization procedures and the following two assumptions: that the structure is composed of either rigid or elastic blocks, and that the mortar is viscoelastic. The hypothesis of rigid block is particularly suitable for historical masonry, in which stone blocks may be assumed as rigid bodies, while the hypothesis of elastic blocks may be assumed for newly constructed brickwork structures. The hypothesis of viscoelastic mortar is based on the observation that non-linear phenomena may be concentrated in mortar joints. Under these assumptions, constitutive homogenized viscous functions are obtained in an analytical form. Some meaningful cases are discussed: masonry columns subject to minor and major eccentricity, and a masonry panel subject to both horizontal and vertical loads. The major eccentricity case is analysed taking into account both the effect of viscosity and the no-tension hypothesis, whereas the bi-dimensional loading case is analysed to verify the sensitivity of masonry behaviour to viscous function. In the masonry wall considered, the principal stresses are both of compression, and the no-tension assumption may therefore be discounted. © 2012 Elsevier Ltd. All rights reserved.

A homogenized viscoelastic model for masonry structures

CECCHI, Antonella;TRALLI, Antonio Michele
2012

Abstract

A linear viscous model for evaluating the stresses and strains produced in masonry structures over time is presented. The model is based on rigorous homogenization procedures and the following two assumptions: that the structure is composed of either rigid or elastic blocks, and that the mortar is viscoelastic. The hypothesis of rigid block is particularly suitable for historical masonry, in which stone blocks may be assumed as rigid bodies, while the hypothesis of elastic blocks may be assumed for newly constructed brickwork structures. The hypothesis of viscoelastic mortar is based on the observation that non-linear phenomena may be concentrated in mortar joints. Under these assumptions, constitutive homogenized viscous functions are obtained in an analytical form. Some meaningful cases are discussed: masonry columns subject to minor and major eccentricity, and a masonry panel subject to both horizontal and vertical loads. The major eccentricity case is analysed taking into account both the effect of viscosity and the no-tension hypothesis, whereas the bi-dimensional loading case is analysed to verify the sensitivity of masonry behaviour to viscous function. In the masonry wall considered, the principal stresses are both of compression, and the no-tension assumption may therefore be discounted. © 2012 Elsevier Ltd. All rights reserved.
2012
Cecchi, Antonella; Tralli, Antonio Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1682549
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 18
social impact