A 3D model for the evaluation of the non-linear behavior of masonry double curvature structures is presented. In the model, the heterogeneous assemblage of blocks is substituted with a macroscopically equivalent homogeneous non-linear material. At the meso-scale, a curved running bond representative element of volume (REV) constituted by a central block interconnected with its six neighbors is discretized through of a few six-noded rigid wedge elements and rectangular interfaces. Non linearity is concentrated exclusively on joints reduced to interface, exhibiting a frictional behavior with limited tensile and compressive strength with softening. The macroscopic homogenous masonry behavior is then evaluated on the REV imposing separately increasing internal actions (in-plane membrane actions, meridian and parallel bending, torsion and out-of-plane shear). This simplified approach allows to estimate heuristically the macroscopic stress–strain behavior of masonry at the meso-scale. The non-linear behavior so obtained is then implemented at a structural level in a novel FE non-linear code, relying on an assemblage of rigid infinitely resistant six-noded wedge elements and non-linear interfaces, exhibiting deterioration of the mechanical properties. Several numerical examples are analyzed, consisting of two different typologies of masonry arches (a parabolic vault and an arch in a so-called “skew” disposition), a ribbed cross vault, a hemispherical dome and a cloister vault. To fully assess numerical results, additional non-linear FE analyses are presented. In particular, a simplified model is proposed, which relies in performing at a structural level a preliminary limit analysis – which allows to identify the failure mechanism – and subsequently in modeling masonry through elastic elements and non-linear interfaces placed only in correspondence or near the failure mechanism provided by limit analysis. Simulations performed through an equivalent macroscopic material with orthotropic behavior and possible softening are also presented, along with existing experimental evidences (where available), in order to have a full insight into the capabilities and limitations of the approach proposed.

A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures

MILANI, Gabriele;TRALLI, Antonio Michele
2012

Abstract

A 3D model for the evaluation of the non-linear behavior of masonry double curvature structures is presented. In the model, the heterogeneous assemblage of blocks is substituted with a macroscopically equivalent homogeneous non-linear material. At the meso-scale, a curved running bond representative element of volume (REV) constituted by a central block interconnected with its six neighbors is discretized through of a few six-noded rigid wedge elements and rectangular interfaces. Non linearity is concentrated exclusively on joints reduced to interface, exhibiting a frictional behavior with limited tensile and compressive strength with softening. The macroscopic homogenous masonry behavior is then evaluated on the REV imposing separately increasing internal actions (in-plane membrane actions, meridian and parallel bending, torsion and out-of-plane shear). This simplified approach allows to estimate heuristically the macroscopic stress–strain behavior of masonry at the meso-scale. The non-linear behavior so obtained is then implemented at a structural level in a novel FE non-linear code, relying on an assemblage of rigid infinitely resistant six-noded wedge elements and non-linear interfaces, exhibiting deterioration of the mechanical properties. Several numerical examples are analyzed, consisting of two different typologies of masonry arches (a parabolic vault and an arch in a so-called “skew” disposition), a ribbed cross vault, a hemispherical dome and a cloister vault. To fully assess numerical results, additional non-linear FE analyses are presented. In particular, a simplified model is proposed, which relies in performing at a structural level a preliminary limit analysis – which allows to identify the failure mechanism – and subsequently in modeling masonry through elastic elements and non-linear interfaces placed only in correspondence or near the failure mechanism provided by limit analysis. Simulations performed through an equivalent macroscopic material with orthotropic behavior and possible softening are also presented, along with existing experimental evidences (where available), in order to have a full insight into the capabilities and limitations of the approach proposed.
2012
Milani, Gabriele; Tralli, Antonio Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1682528
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 70
social impact