The present manuscript mainly summarizes the basic concepts and the molecular mechanisms underlying adenosine A(2A)-dopamine D(2) receptor-receptor interactions in the basal ganglia. Special emphasis is placed on neurochemical, behavioral and electrophysiological findings supporting the functional role that A(2A)/D(2) heteromeric receptor complexes located on striato-pallidal GABA neurons and corticostriatal glutamate terminals play in the regulation of the so called "basal ganglia indirect pathway". Furthermore, the role of A(2A)/mGluR(5) synergistic interactions in striatal neuron function and dysfunction is discussed. The functional consequences of the interactions between striatal adenosine A(2A), mGluR(5) and dopamine D(2) receptors on striatopallidal GABA release and motor behavior dysfunctions suggest the possibility of simultaneously targeting these receptors in Parkinson's disease treatment. This article is part of a Special Issue entitled Brain Integration. This article is part of a Special Issue entitled Brain Integration.
A(2A)/D(2) receptor heteromerization in a model of Parkinson's disease. Focus on striatal aminoacidergic signaling.
FERRARO, Luca Nicola;BEGGIATO, Sarah;TOMASINI, Maria Cristina;ANTONELLI, Tiziana;TANGANELLI, Sergio
2012
Abstract
The present manuscript mainly summarizes the basic concepts and the molecular mechanisms underlying adenosine A(2A)-dopamine D(2) receptor-receptor interactions in the basal ganglia. Special emphasis is placed on neurochemical, behavioral and electrophysiological findings supporting the functional role that A(2A)/D(2) heteromeric receptor complexes located on striato-pallidal GABA neurons and corticostriatal glutamate terminals play in the regulation of the so called "basal ganglia indirect pathway". Furthermore, the role of A(2A)/mGluR(5) synergistic interactions in striatal neuron function and dysfunction is discussed. The functional consequences of the interactions between striatal adenosine A(2A), mGluR(5) and dopamine D(2) receptors on striatopallidal GABA release and motor behavior dysfunctions suggest the possibility of simultaneously targeting these receptors in Parkinson's disease treatment. This article is part of a Special Issue entitled Brain Integration. This article is part of a Special Issue entitled Brain Integration.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.