We propose a simple algorithm able to identify a set of temperatures for a Parallel Tempering Monte Carlo simulation, that maximizes the probability that the configurations drift across all temperature values, from the coldest to the hottest ones, and vice versa. The proposed algorithm starts from data gathered from relatively short Monte Carlo simulations and is straightforward to implement. We assess its effectiveness on a test case simulation of an Edwards–Anderson spin glass on a lattice of 12^3 sites.

Efficient assignment of the temperature set for Parallel Tempering

GUIDETTI, Marco;ROLANDO, Valentina;TRIPICCIONE, Raffaele
2012

Abstract

We propose a simple algorithm able to identify a set of temperatures for a Parallel Tempering Monte Carlo simulation, that maximizes the probability that the configurations drift across all temperature values, from the coldest to the hottest ones, and vice versa. The proposed algorithm starts from data gathered from relatively short Monte Carlo simulations and is straightforward to implement. We assess its effectiveness on a test case simulation of an Edwards–Anderson spin glass on a lattice of 12^3 sites.
2012
Guidetti, Marco; Rolando, Valentina; Tripiccione, Raffaele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1627666
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact