In this paper we consider partial differential operators of the type P(x, D)= P m(D)+Q(x, D), where the constant coefficient principal part P m is supposed to be hyperbolic-elliptic. We study the propagation of Gevrey singularities for solutions u of the equation P(x, D) u=f, for ultradistributions f, finding exactly to which spaces of ultradistribuiions u microlocally belongs. The results are obtained by constructing a fundamental solution for P when the lower order part Q is with constant coefficients, and a parametrix otherwise.

Propagation of singularities for operators with constant coefficient hyperbolic-elliptic principal part

CORLI, Andrea
1987

Abstract

In this paper we consider partial differential operators of the type P(x, D)= P m(D)+Q(x, D), where the constant coefficient principal part P m is supposed to be hyperbolic-elliptic. We study the propagation of Gevrey singularities for solutions u of the equation P(x, D) u=f, for ultradistributions f, finding exactly to which spaces of ultradistribuiions u microlocally belongs. The results are obtained by constructing a fundamental solution for P when the lower order part Q is with constant coefficients, and a parametrix otherwise.
1987
M., Cicognani; Corli, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1537991
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact