The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters—the mass of the compact object—is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M sun, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M sun and 14.4 M sun. Our favored estimate, based on a 9.0 kpc distance estimate, is ~10 M sun, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.

New Evidence for a Black Hole in the Compact Binary Cygnus X-3

TITARCHUK, Lev;
2010

Abstract

The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters—the mass of the compact object—is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M sun, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M sun and 14.4 M sun. Our favored estimate, based on a 9.0 kpc distance estimate, is ~10 M sun, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.
2010
C., Shrader; Titarchuk, Lev; Shaposhnikov, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1527561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact