Benzoyl peroxide (BP) is used as a topical treatment for acne. Besides its anti-bacterial activity, the exact molecular mechanisms underlying its mode of action are not fully understood. In the current study, the effects of BP on cell viability, antioxidant status and, IL-1 and IL-8 gene expression were investigated in HaCaT keratinocytes. Keratinocytes incubated for 24 h with BP exhibited a dose-dependent cytotoxicity at concentrations above 250 microM. Furthermore, in the presence of 300 microM BP about 50% of the cellular vitamin E was depleted within the first 30 min. The intracellular ratio of oxidized to reduced glutathione (GSSG/GSH) was increased significantly starting 6 h after BP treatments indicating that BP reacts rapidly with targets in the cell membrane and more slowly with those in the cytosol. NF-kappaB transactivation was not significantly affected by BP. However, BP treatment of HaCaT keratinocytes resulted in a dose-dependent increase in IL-1alpha gene expression whereas no changes in IL-8 mRNA levels were observed. These results demonstrate that BP induces an inflammatory reaction mediated by oxidative stress by a pathway independent of the redox-sensitive transcription factor NF-kappaB.

Effect of benzoyl peroxide on antioxidant status, NF-kappaB activity and interleukin-1alpha gene expression in human keratinocytes.

VALACCHI, Giuseppe;
2001

Abstract

Benzoyl peroxide (BP) is used as a topical treatment for acne. Besides its anti-bacterial activity, the exact molecular mechanisms underlying its mode of action are not fully understood. In the current study, the effects of BP on cell viability, antioxidant status and, IL-1 and IL-8 gene expression were investigated in HaCaT keratinocytes. Keratinocytes incubated for 24 h with BP exhibited a dose-dependent cytotoxicity at concentrations above 250 microM. Furthermore, in the presence of 300 microM BP about 50% of the cellular vitamin E was depleted within the first 30 min. The intracellular ratio of oxidized to reduced glutathione (GSSG/GSH) was increased significantly starting 6 h after BP treatments indicating that BP reacts rapidly with targets in the cell membrane and more slowly with those in the cytosol. NF-kappaB transactivation was not significantly affected by BP. However, BP treatment of HaCaT keratinocytes resulted in a dose-dependent increase in IL-1alpha gene expression whereas no changes in IL-8 mRNA levels were observed. These results demonstrate that BP induces an inflammatory reaction mediated by oxidative stress by a pathway independent of the redox-sensitive transcription factor NF-kappaB.
2001
Valacchi, Giuseppe; Rimbach, G; Saliou, C; Weber, Su; Packer, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1516152
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 58
social impact