Beta-carotene has been thought to protect against oxidative stress generated by ultraviolet radiation and thus prevents skin cancer and skin aging (Biesalski and Obermueller-Jevic, 2001). However, nothing is known about its potential effects against other environmental sources of oxidative stress such as ozone (O3) in skin. Intake of oral beta-carotene supplements before exposure to sunlight (and thus inevitably also to (O3) has been recommended on a population-wide basis. However, although some studies have shown beta-carotene as providing skin protection as an antioxidant, other studies using skin cells in culture have shown that beta-carotene may have unexpected prooxidant properties (Obermüller-Jevic, et al., 2001). Given this, there is an ongoing debate regarding the protective or potentially harmful role(s) of beta-carotene in human skin. In this study, the effect of beta-carotene on ozone's effects on the skin of hairless mice was assessed. After feeding a diet supplemented with 0.5% beta-carotene for 1 month, mice were subjected to O3 exposure (0.8 ppm 6 h/day; 7 days) and the induction of proinflammatory markers such as tumor necrosis factor-alpha (TNFalpha), macrophage inflammatory protein 2 (MIP2), and inducible nitric oxide synthase (iNOS), and markers of oxidative stress, heme-oxygenase-1 (HO-1), were quantitated. The data showed that beta-carotene downregulated the induction of TNFalpha, MIP2, iNOS, and HO-1 in response to O3. We conclude that beta-carotene provides protection against O3-induced skin oxidative stress in vivo, which is consistent with a protective role for beta-carotene in the skin.

Beta-carotene prevents ozone-induced proinflammatory markers in murine skin

VALACCHI, Giuseppe;Pecorelli A;
2009

Abstract

Beta-carotene has been thought to protect against oxidative stress generated by ultraviolet radiation and thus prevents skin cancer and skin aging (Biesalski and Obermueller-Jevic, 2001). However, nothing is known about its potential effects against other environmental sources of oxidative stress such as ozone (O3) in skin. Intake of oral beta-carotene supplements before exposure to sunlight (and thus inevitably also to (O3) has been recommended on a population-wide basis. However, although some studies have shown beta-carotene as providing skin protection as an antioxidant, other studies using skin cells in culture have shown that beta-carotene may have unexpected prooxidant properties (Obermüller-Jevic, et al., 2001). Given this, there is an ongoing debate regarding the protective or potentially harmful role(s) of beta-carotene in human skin. In this study, the effect of beta-carotene on ozone's effects on the skin of hairless mice was assessed. After feeding a diet supplemented with 0.5% beta-carotene for 1 month, mice were subjected to O3 exposure (0.8 ppm 6 h/day; 7 days) and the induction of proinflammatory markers such as tumor necrosis factor-alpha (TNFalpha), macrophage inflammatory protein 2 (MIP2), and inducible nitric oxide synthase (iNOS), and markers of oxidative stress, heme-oxygenase-1 (HO-1), were quantitated. The data showed that beta-carotene downregulated the induction of TNFalpha, MIP2, iNOS, and HO-1 in response to O3. We conclude that beta-carotene provides protection against O3-induced skin oxidative stress in vivo, which is consistent with a protective role for beta-carotene in the skin.
2009
Valacchi, Giuseppe; Pecorelli, A; Mencarelli, M; Maioli, E; Davis, P. A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1515518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact