The development and the optimization of novel culture systems of mesenchymal osteoprogenitors are some of the most important challenges in the field of bone tissue engineering (TE). A new combination between cells and extracellular matrix (ECM)-scaffold, containing ECM has here been analyzed. As source for osteoprogenitors, mesenchymal stem cells obtained from human umbilical cord Wharton's Jelly (hWJMSCs), were used. As ECM-scaffold, a powder form of isolated and purified porcine urinary bladder matrix (pUBM), was employed. The goals of the current work were: (1) the characterization of the in vitro hWJMSCs behavior, in terms of viability, proliferation, and adhesion to ECM-scaffold; (2) the effectiveness of ECM-scaffold to induce/modulate the osteoblastic differentiation; and (3) the proposal for a possible application of cells/ECM-scaffold construct to the field of cell/TE. In this respect, the properties of the pUBM-scaffold in promoting and guiding the in vitro adhesion, proliferation, and three-dimensional colonization of hWJMSCs, without altering viability and morphological characteristics of the cells, are here described. Finally, we have also demonstrated that pUBM-scaffolds positively affect the expression of typical osteoblastic markers in hWJMSCs. © 2011 Wiley Periodicals, Inc.
Human mesenchymal stem cells seeded on extracellular matrix scaffold: Viability and osteogenic potential
PENOLAZZI, Maria LetiziaPrimo
;MAZZITELLI, StefaniaSecondo
;VECCHIATINI, Renata;TORREGGIANI, Elena;LAMBERTINI, Elisabetta;PIVA, Maria Roberta
Penultimo
;NASTRUZZI, ClaudioUltimo
2012
Abstract
The development and the optimization of novel culture systems of mesenchymal osteoprogenitors are some of the most important challenges in the field of bone tissue engineering (TE). A new combination between cells and extracellular matrix (ECM)-scaffold, containing ECM has here been analyzed. As source for osteoprogenitors, mesenchymal stem cells obtained from human umbilical cord Wharton's Jelly (hWJMSCs), were used. As ECM-scaffold, a powder form of isolated and purified porcine urinary bladder matrix (pUBM), was employed. The goals of the current work were: (1) the characterization of the in vitro hWJMSCs behavior, in terms of viability, proliferation, and adhesion to ECM-scaffold; (2) the effectiveness of ECM-scaffold to induce/modulate the osteoblastic differentiation; and (3) the proposal for a possible application of cells/ECM-scaffold construct to the field of cell/TE. In this respect, the properties of the pUBM-scaffold in promoting and guiding the in vitro adhesion, proliferation, and three-dimensional colonization of hWJMSCs, without altering viability and morphological characteristics of the cells, are here described. Finally, we have also demonstrated that pUBM-scaffolds positively affect the expression of typical osteoblastic markers in hWJMSCs. © 2011 Wiley Periodicals, Inc.File | Dimensione | Formato | |
---|---|---|---|
j cell physiol.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.