Before marketing external gear pumps are subjected to a running in process to increase their efficiency. However, this is one of the most time-consuming tasks of the entire manufacturing process. Therefore, a mathematical model for optimizing the running in process can be a useful tool for time-to-market reduction. In particular, in this paper a model for the analysis of the dynamic behaviour of external gear pumps, developed by the authors in previous works, is modified and used for simulating the running in process. The modified model is presented and validated via experimental data. A good correlation between simulation and test results guarantees the effectiveness of the model in determining the amount and the distribution of the removed material during the running in process. A meaningful reduction (16%) of the global running in time has been achieved with the introduction of a modified running in process drawn from simulation results.

Simulation of the running in process in external gear pumps and experimental verification

MUCCHI, Emiliano;D'ELIA, Gianluca;DALPIAZ, Giorgio
2012

Abstract

Before marketing external gear pumps are subjected to a running in process to increase their efficiency. However, this is one of the most time-consuming tasks of the entire manufacturing process. Therefore, a mathematical model for optimizing the running in process can be a useful tool for time-to-market reduction. In particular, in this paper a model for the analysis of the dynamic behaviour of external gear pumps, developed by the authors in previous works, is modified and used for simulating the running in process. The modified model is presented and validated via experimental data. A good correlation between simulation and test results guarantees the effectiveness of the model in determining the amount and the distribution of the removed material during the running in process. A meaningful reduction (16%) of the global running in time has been achieved with the introduction of a modified running in process drawn from simulation results.
2012
Mucchi, Emiliano; D'Elia, Gianluca; Dalpiaz, Giorgio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1468113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 34
social impact