It is known that a dual quasi-bialgebra with antipode H, i.e. a dual quasi-Hopf algebra, fulfils a fundamental theorem for right dual quasi-Hopf H-bicomodules. The converse in general is not true. We prove that, for a dual quasi-bialgebra H, the structure theorem amounts to the existence of a suitable map S : H --> H that we call a preantipode of H.
Preantipodes for Dual Quasi-Bialgebras
ARDIZZONI, Alessandro
;PAVARIN, Alice
2012
Abstract
It is known that a dual quasi-bialgebra with antipode H, i.e. a dual quasi-Hopf algebra, fulfils a fundamental theorem for right dual quasi-Hopf H-bicomodules. The converse in general is not true. We prove that, for a dual quasi-bialgebra H, the structure theorem amounts to the existence of a suitable map S : H --> H that we call a preantipode of H.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1012.1956.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
171.85 kB
Formato
Adobe PDF
|
171.85 kB | Adobe PDF | Visualizza/Apri |
Ardizzoni-Pavarin2012_Article_PreantipodesForDualQuasi-bialg.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
183.86 kB
Formato
Adobe PDF
|
183.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.