We study some properties of graphs whose mean curvature (in distributional sense) is a vector Radon measure. In particular, we prove that the distributional mean curvature of the graph of a Lipschitz continuous function u is a measure if and only if the distributional divergence of T u is a measure. This equivalence fails to be true if Lipschitz continuity is relaxed, as it is shown in a couple of examples. Finally, we prove a theorem of approximation in W^(1,1) and in the sense of mean curvature of C2 graphs by polyhedral graphs. A number of examples illustrating different situations which can occur complete the work.

On the generalized mean curvature

MASSARI, Umberto
2010

Abstract

We study some properties of graphs whose mean curvature (in distributional sense) is a vector Radon measure. In particular, we prove that the distributional mean curvature of the graph of a Lipschitz continuous function u is a measure if and only if the distributional divergence of T u is a measure. This equivalence fails to be true if Lipschitz continuity is relaxed, as it is shown in a couple of examples. Finally, we prove a theorem of approximation in W^(1,1) and in the sense of mean curvature of C2 graphs by polyhedral graphs. A number of examples illustrating different situations which can occur complete the work.
2010
E., Barozzi; E., Gonzalez; Massari, Umberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1404225
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact