Let H be a Hopf algebra over a field K of characteristic 0 and let A be a bialgebra or Hopf algebra such that H is isomorphic to a sub-Hopf algebra of A and there is an H-bilinear coalgebra projection π from A to H which splits the inclusion. Then A is isomorphic to R#ξH where R is the pre-bialgebra of coinvariants. In this paper we study the deformations of A by an H-bilinear cocycle. If γ is a cocycle for A, then γ can be restricted to a cocycle γR for R, and A^γ is isomorphic to R^γR#ξγ H. As examples, we consider liftings of B(V)#K[Γ] where Γ is a finite abelian group, V is a quantum plane and B(V) is its Nichols algebra, and explicitly construct the cocycle which twists the Radford biproduct into the lifting.

Cocycle Deformations for Hopf Algebras with a Coalgebra Projection

ARDIZZONI, Alessandro;MENINI, Claudia
2010

Abstract

Let H be a Hopf algebra over a field K of characteristic 0 and let A be a bialgebra or Hopf algebra such that H is isomorphic to a sub-Hopf algebra of A and there is an H-bilinear coalgebra projection π from A to H which splits the inclusion. Then A is isomorphic to R#ξH where R is the pre-bialgebra of coinvariants. In this paper we study the deformations of A by an H-bilinear cocycle. If γ is a cocycle for A, then γ can be restricted to a cocycle γR for R, and A^γ is isomorphic to R^γR#ξγ H. As examples, we consider liftings of B(V)#K[Γ] where Γ is a finite abelian group, V is a quantum plane and B(V) is its Nichols algebra, and explicitly construct the cocycle which twists the Radford biproduct into the lifting.
2010
Ardizzoni, Alessandro; Beattie, M.; Menini, Claudia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1403925
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact