A braided bialgebra is called primitively generated if it is generated as an algebra by its space of primitive elements. We prove that any primitively generated braided bialgebra is isomorphic to the universal enveloping algebra of its infinitesimal braided Lie algebra, notions hereby introduced. This result can be regarded as a Milnor–Moore type theorem for primitively generated braided bialgebras and leads to the introduction of a concept of braided Lie algebra for an arbitrary braided vector space.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Data di pubblicazione: | 2011 | |
Titolo: | A Milnor-Moore Type Theorem for Primitively Generated Braided Bialgebras | |
Autori: | ARDIZZONI A. | |
Rivista: | JOURNAL OF ALGEBRA | |
Parole Chiave: | Braided bialgebras; Braided Lie algebras; Universal enveloping algebras | |
Abstract: | A braided bialgebra is called primitively generated if it is generated as an algebra by its space of primitive elements. We prove that any primitively generated braided bialgebra is isomorphic to the universal enveloping algebra of its infinitesimal braided Lie algebra, notions hereby introduced. This result can be regarded as a Milnor–Moore type theorem for primitively generated braided bialgebras and leads to the introduction of a concept of braided Lie algebra for an arbitrary braided vector space. | |
Digital Object Identifier (DOI): | 10.1016/j.jalgebra.2010.07.031 | |
Handle: | http://hdl.handle.net/11392/1403766 | |
Appare nelle tipologie: | 03.1 Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.