We study the weak* lower semicontinuity properties of functionals of the form $$ F(u)=\supess_{x \in \Og} f(x,Du (x)) $$ where $\Og$ is a bounded open set of $\R^N$ and $u \in W^{1,\infty}(\Omega).$ Without a continuity assumption on $f( \cdot,\xi)$ we show that the {\sl supremal} functional $F$ is weakly* lower semicontinuous if and only if it is a level convex functional (i.e. it has convex sub-levels). In particular if $F$ is weakly* lower semicontinuous, then it can be represented through a level convex function. Finally a counterexample shows that in general it is not possible to represent $F$ through the level convex envelope of $f$.

"Supremal Representation of L^{infty} Functionals"

Prinari F.
2005

Abstract

We study the weak* lower semicontinuity properties of functionals of the form $$ F(u)=\supess_{x \in \Og} f(x,Du (x)) $$ where $\Og$ is a bounded open set of $\R^N$ and $u \in W^{1,\infty}(\Omega).$ Without a continuity assumption on $f( \cdot,\xi)$ we show that the {\sl supremal} functional $F$ is weakly* lower semicontinuous if and only if it is a level convex functional (i.e. it has convex sub-levels). In particular if $F$ is weakly* lower semicontinuous, then it can be represented through a level convex function. Finally a counterexample shows that in general it is not possible to represent $F$ through the level convex envelope of $f$.
2005
Cardaliaguet, P.; Prinari, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1401270
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact