We prove that the Gamma-limit in L^1_μ of a sequence of supremal functionals of the form F_k(u) = μ-ess sup f_k(x, u) is itself a supremal functional. We show by a counterexample that, in general, the function which represents the Gamma- lim F(·,B) of a sequence of functionals F_k(u,B) = μ-ess sup_B f_k(x, u) can depend on the set B and we give a necessary and sufficient condition to represent F in the supremal form F(u,B) = μ-ess sup_B f(x, u). As a corollary, if f represents a supremal functional, then the level convex envelope of f represents its weak* lower semicontinuous envelope.

Relaxation and gamma-convergence of supremal functionals

PRINARI, Francesca Agnese
2006

Abstract

We prove that the Gamma-limit in L^1_μ of a sequence of supremal functionals of the form F_k(u) = μ-ess sup f_k(x, u) is itself a supremal functional. We show by a counterexample that, in general, the function which represents the Gamma- lim F(·,B) of a sequence of functionals F_k(u,B) = μ-ess sup_B f_k(x, u) can depend on the set B and we give a necessary and sufficient condition to represent F in the supremal form F(u,B) = μ-ess sup_B f(x, u). As a corollary, if f represents a supremal functional, then the level convex envelope of f represents its weak* lower semicontinuous envelope.
2006
Prinari, Francesca Agnese
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1401265
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact