This work describes the application of a signal processing method to GC–MS chromatograms of PM10 and PM2.5 samples collected in rural and urban areas. The method is focused on the computation of the two relevant parameters nmax and CPI that can be directly estimated from the AutoCoVariance Function (ACVF) computed on the acquired chromatogram. The procedure makes it possible to extract usable information hidden in the chromatogram thus reducing the labour and time required and increasing the quality and objectivity of the results.

Source Apportionment for PM samples: a chemometric approach based on the AutoCoVariance Function computation for GC-MS data treatment and organic tracers identification

MERCURIALI, Mattia;PIETROGRANDE, Maria Chiara
2009

Abstract

This work describes the application of a signal processing method to GC–MS chromatograms of PM10 and PM2.5 samples collected in rural and urban areas. The method is focused on the computation of the two relevant parameters nmax and CPI that can be directly estimated from the AutoCoVariance Function (ACVF) computed on the acquired chromatogram. The procedure makes it possible to extract usable information hidden in the chromatogram thus reducing the labour and time required and increasing the quality and objectivity of the results.
2009
GC-MS; n-alkanes; organic tracers; PM; source apportionment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1400547
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact