Gas turbine performance degradation over time is mainly due to the deterioration of compressor and turbine blades, which, in turn, causes a modification of the compressor and turbine performance maps. Since detailed information about the actual modification of the compressor and turbine performance maps is usually unavailable, component performance can be modeled and investigated (i) by scaling the overall performance map, or (ii) by using stage-by-stage models of the compressor and turbine and by scaling each single stage performance map to account for each stage deterioration, or (iii) by performing 3D numerical simulations, which allow to both highlight the fluid-dynamic phenomena occurring in the faulty component and grasp the effect on the overall performance of the component. In this paper, the authors address the most common and experienced source of loss for a gas turbine, i.e. compressor fouling. With respect to the traditional approach, which mainly aims at the identification of the overall effects of fouling, authors investigate a micro-scale representation of compressor fouling (e.g. blade surface deterioration and flow deviation). This allows (i) a more detailed investigation of the fouling effects (e.g. mechanism, location along blade height, etc.), (ii) a more extensive analysis of the causes of performance deterioration and (iii) the assessment of the effect of fouling on stage performance coefficients and on stage performance maps. The effects of a non-uniform surface roughness on both rotor and stator blades of an axial compressor stage are investigated by using a commercial CFD code. The NASA Stage 37 test case was used as the baseline geometry. The numerical model already validated against experimental data available in literature was used for the simulations. Different non-uniform combinations of surface roughness levels on rotor and stator blades were imposed. This makes it possible to highlight how the localization of fouling on compressor blades affects compressor performance, both at an overall and at a fluid-dynamic level.

Numerical analysis of the effects of non-uniform surface roughness on compressor stage performance

MORINI, Mirko;PINELLI, Michele;SPINA, Pier Ruggero;VENTURINI, Mauro
2010

Abstract

Gas turbine performance degradation over time is mainly due to the deterioration of compressor and turbine blades, which, in turn, causes a modification of the compressor and turbine performance maps. Since detailed information about the actual modification of the compressor and turbine performance maps is usually unavailable, component performance can be modeled and investigated (i) by scaling the overall performance map, or (ii) by using stage-by-stage models of the compressor and turbine and by scaling each single stage performance map to account for each stage deterioration, or (iii) by performing 3D numerical simulations, which allow to both highlight the fluid-dynamic phenomena occurring in the faulty component and grasp the effect on the overall performance of the component. In this paper, the authors address the most common and experienced source of loss for a gas turbine, i.e. compressor fouling. With respect to the traditional approach, which mainly aims at the identification of the overall effects of fouling, authors investigate a micro-scale representation of compressor fouling (e.g. blade surface deterioration and flow deviation). This allows (i) a more detailed investigation of the fouling effects (e.g. mechanism, location along blade height, etc.), (ii) a more extensive analysis of the causes of performance deterioration and (iii) the assessment of the effect of fouling on stage performance coefficients and on stage performance maps. The effects of a non-uniform surface roughness on both rotor and stator blades of an axial compressor stage are investigated by using a commercial CFD code. The NASA Stage 37 test case was used as the baseline geometry. The numerical model already validated against experimental data available in literature was used for the simulations. Different non-uniform combinations of surface roughness levels on rotor and stator blades were imposed. This makes it possible to highlight how the localization of fouling on compressor blades affects compressor performance, both at an overall and at a fluid-dynamic level.
2010
9780791844007
File in questo prodotto:
File Dimensione Formato  
59.pdf

solo gestori archivio

Descrizione: 59
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1398603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 1
social impact