We have analyzed the effect of the synthetic glucocorticoid dexamethasone, used alone or in combination with recombinant TRAIL, on in vitro osteoclastic differentiation of peripheral blood-derived macrophages cultured in the presence of macrophage-colony stimulating factor (M-CSF) + RANKL for 12-14 days. Dexamethasone exhibited different effects based on the concentration used. Indeed, while at 10(-7) M dexamethasone reduced the number of mature osteoclasts, at 10(-8) M showed no significant effects and at 10(-9) M significantly increased the number of mature osteoclasts, with respect to cells cultured with only M-CSF + RANKL. On the other hand, the addition in culture of recombinant TRAIL inhibited the output of mature osteoclasts induced by M-CSF + RANKL. However, the presence of dexamethasone (10(-8) or 10(-9) M) into the culture medium significantly counteracted the anti-osteoclastic activity of TRAIL. In order to ascertain whether dexamethasone, might also interfere with the anti-leukemic activity of TRAIL, the degree of apoptosis induced by TRAIL was evaluated in several myeloid (OCI, MOLM, HL-60) and lymphoid (SKW6.4, MAVER, BJAB) leukemic cell lines. The levels of TRAIL-triggered apoptosis were not significantly different between leukemic cells cultured in the absence or presence of dexamethasone. Concerning the molecular mechanism mediating the dexamethasone-suppression of the TRAIL activity in pre-osteoclasts, but not in leukemic cells, we found that dexamethasone induced a significant down-regulation of the surface levels of TRAIL-R2 in cells of the osteoclastic lineage but not in leukemic cells. The ability of dexamethasone to counteract the TRAIL pathway envisions a novel mechanism mediating the pro-osteoclastic activity of dexamethasone in vivo.
Dexamethasone counteracts the anti-osteoclastic, but not the anti-leukemic, activity of TNF-related apoptosis inducing ligand (TRAIL)
ZAULI, Giorgio;RIMONDI, Erika;Celeghini C;MILANI, Daniela;SECCHIERO, Paola
2010
Abstract
We have analyzed the effect of the synthetic glucocorticoid dexamethasone, used alone or in combination with recombinant TRAIL, on in vitro osteoclastic differentiation of peripheral blood-derived macrophages cultured in the presence of macrophage-colony stimulating factor (M-CSF) + RANKL for 12-14 days. Dexamethasone exhibited different effects based on the concentration used. Indeed, while at 10(-7) M dexamethasone reduced the number of mature osteoclasts, at 10(-8) M showed no significant effects and at 10(-9) M significantly increased the number of mature osteoclasts, with respect to cells cultured with only M-CSF + RANKL. On the other hand, the addition in culture of recombinant TRAIL inhibited the output of mature osteoclasts induced by M-CSF + RANKL. However, the presence of dexamethasone (10(-8) or 10(-9) M) into the culture medium significantly counteracted the anti-osteoclastic activity of TRAIL. In order to ascertain whether dexamethasone, might also interfere with the anti-leukemic activity of TRAIL, the degree of apoptosis induced by TRAIL was evaluated in several myeloid (OCI, MOLM, HL-60) and lymphoid (SKW6.4, MAVER, BJAB) leukemic cell lines. The levels of TRAIL-triggered apoptosis were not significantly different between leukemic cells cultured in the absence or presence of dexamethasone. Concerning the molecular mechanism mediating the dexamethasone-suppression of the TRAIL activity in pre-osteoclasts, but not in leukemic cells, we found that dexamethasone induced a significant down-regulation of the surface levels of TRAIL-R2 in cells of the osteoclastic lineage but not in leukemic cells. The ability of dexamethasone to counteract the TRAIL pathway envisions a novel mechanism mediating the pro-osteoclastic activity of dexamethasone in vivo.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.