In this paper we present a comparison of two Inductive Logic Programming (ILP) systems on the Sisyphus dataset. The aim of the comparison is to to show how the systems behave on a large dataset. The considered systems are Aleph and Tilde. Both systems have an unacceptable execution time on the whole dataset, so they are run over samples extracted from the dataset. The comparison shows that, on average, Tilde finds more accurate theories in a smaller time.

A Comparison of ILP Systems on the Sisyphus Dataset

RIGUZZI, Fabrizio
2005

Abstract

In this paper we present a comparison of two Inductive Logic Programming (ILP) systems on the Sisyphus dataset. The aim of the comparison is to to show how the systems behave on a large dataset. The considered systems are Aleph and Tilde. Both systems have an unacceptable execution time on the whole dataset, so they are run over samples extracted from the dataset. The comparison shows that, on average, Tilde finds more accurate theories in a smaller time.
2005
Inductive Logic Programming; Machine Learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1392438
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact