Cationic block copolymers spontaneously assemble via electrostatic interactions with DNA molecules in aqueous solution giving rise to micellar structures that protect the DNA from enzymatic degradation both in vitro and in vivo. In addition, we have previously shown that they are safe, not immunogenic and greatly increased antigen-specific CTL responses following six intramuscular inoculations of a very low dose (1microg) of the vaccine DNA as compared to naked DNA. Nevertheless, they failed to elicit detectable humoral responses against the antigen. To gain further insight in the potential application of this technology, here we show that a shorter immunization protocol based on two DNA intramuscular inoculations of 1microg of DNA delivered by these copolymers and a protein boost elicits in mice broad (both humoral and cellular) and long-lasting responses and increases the antigen-specific Th1-type T cell responses and CTLs as compared to priming with naked DNA. These results indicate that cationic block copolymers represent a promising adjuvant and delivery technology for DNA vaccination strategies aimed at combating intracellular pathogens.

Priming with a very low dose of DNA complexed with cationic block copolymers followed by protein boost elicits broad and long-lasting antigen-specific humoral and cellular responses in mice

VOLTAN, Rebecca;CASTALDELLO, Arianna;DE MICHELE, Rita;TRIULZI, Chiara;REALI E.;GAVIOLI, Riccardo;CAPUTO, Antonella
2009

Abstract

Cationic block copolymers spontaneously assemble via electrostatic interactions with DNA molecules in aqueous solution giving rise to micellar structures that protect the DNA from enzymatic degradation both in vitro and in vivo. In addition, we have previously shown that they are safe, not immunogenic and greatly increased antigen-specific CTL responses following six intramuscular inoculations of a very low dose (1microg) of the vaccine DNA as compared to naked DNA. Nevertheless, they failed to elicit detectable humoral responses against the antigen. To gain further insight in the potential application of this technology, here we show that a shorter immunization protocol based on two DNA intramuscular inoculations of 1microg of DNA delivered by these copolymers and a protein boost elicits in mice broad (both humoral and cellular) and long-lasting responses and increases the antigen-specific Th1-type T cell responses and CTLs as compared to priming with naked DNA. These results indicate that cationic block copolymers represent a promising adjuvant and delivery technology for DNA vaccination strategies aimed at combating intracellular pathogens.
2009
Voltan, Rebecca; Castaldello, Arianna; BROCCA COFANO, E.; DE MICHELE, Rita; Triulzi, Chiara; Altavilla, G.; Tondelli, L.; Laus, M.; Sparnacci, K.; Reali, E.; Gavioli, Riccardo; Ensoli, B.; Caputo, Antonella
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1391680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact