Virtual screening against NF-kappaB p50 using docking simulations was applied by starting from a three-dimensional (3D) database containing more than 4.6 million commercially available structures. This database was filtered by specifying a subset of commercially available compounds sharing a (2E,Z)-3-(2-hydroxyphenyl)-2-propenoate substructure and relevant druglike properties. Docking to p50 NF-kappaB was performed with a test set of six known inhibitors of NF-kappaB-DNA interactions. In agreement with docking results, the highest-scored compound displayed a high level of inhibitory activity in electrophoretic mobility shift assay (EMSA) experiments (inhibition of NF-kappaB-DNA interactions) and on biological functions dependent on NF-kappaB activity (inhibition of IL-8 gene expression in cystic fibrosis IB3-1 cells). We found that this in silico screening approach is suitable for the identification of low-molecular-weight compounds that inhibit NF-kappaB-DNA interactions and NF-kappaB-dependent functions. Information deduced from the discovery of the new lead compound and its binding mode could result in further lead optimization resulting in more potent NF-kappaB inhibitors.

Virtual screening against p50 NF-kappaB transcription factor for the identification of inhibitors of the NF-kappaB-DNA interaction and expression of NF-kappaB upregulated genes

PICCAGLI, Laura;FABBRI, Enrica;BORGATTI, Monica;BIANCHI, Nicoletta;MANCINI, Irene;LAMPRONTI, Ilaria;GAMBARI, Roberto
2009

Abstract

Virtual screening against NF-kappaB p50 using docking simulations was applied by starting from a three-dimensional (3D) database containing more than 4.6 million commercially available structures. This database was filtered by specifying a subset of commercially available compounds sharing a (2E,Z)-3-(2-hydroxyphenyl)-2-propenoate substructure and relevant druglike properties. Docking to p50 NF-kappaB was performed with a test set of six known inhibitors of NF-kappaB-DNA interactions. In agreement with docking results, the highest-scored compound displayed a high level of inhibitory activity in electrophoretic mobility shift assay (EMSA) experiments (inhibition of NF-kappaB-DNA interactions) and on biological functions dependent on NF-kappaB activity (inhibition of IL-8 gene expression in cystic fibrosis IB3-1 cells). We found that this in silico screening approach is suitable for the identification of low-molecular-weight compounds that inhibit NF-kappaB-DNA interactions and NF-kappaB-dependent functions. Information deduced from the discovery of the new lead compound and its binding mode could result in further lead optimization resulting in more potent NF-kappaB inhibitors.
2009
Piccagli, Laura; Fabbri, Enrica; Borgatti, Monica; Bianchi, Nicoletta; Bezzerri, V; Mancini, Irene; Nicolis, E; Dechecchi, Cm; Lampronti, Ilaria; Cabr...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1381457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact