The response to molybdenum (Mo) was studied in the metal-tolerant hydrophyte Trapa natans L. Previously, it was shown that the plant accumulates Mn in the floating lamina by means of phenolic compounds and responded with acclimation responses of the chloroplast. Since the involvement of phenolics has been proposed also in Mo resistance, we tested the response of T. natans to increasing doses (5, 50, 150, 600 μM) of Mo using the photosynthetic apparatus as an indicator of cellular stress. Only 5 μM Mo did not cause evident modifications with respect to controls. Conversely, 50 to 600 μM Mo induced progressively marked alterations of the lamina morphology. The chloroplast ultrastructure showed disorganisation of the thylakoid system, and correspondingly, the photosynthetic pigment pattern was altered with a fall-down in photosynthesis. Microspectrofluorimetry indicated alterations of photosystem II, with differences among the three cell layers (first and second palisade and spongy tissues). While the highest dose caused plant death, 50 and 150 μM Mo-treated plants underwent partial recovery, and the plant survived up to the end of the vegetative season. However, reproduction was unsuccessful. Mo treatment did not induce increase in total phenolics, but only in anthocyanin. In contrast to Mn, detoxification of Mo by chelation inside vacuoles, possibly by anthocyanins, is suggested to be an insufficient mechanism to reduce Mo toxicity, which probably includes an impairement of nitrogen metabolism. However, the metal was accumulated in the lamina. On the whole, T. natans showed limited capabilities to survive Mo excess as compared with Mn.

Morpho-physiological and biochemical responses in the floating lamina of Trapa natans exposed to molybdenum

BALDISSEROTTO, Costanza;FERRONI, Lorenzo;MARCHESINI, Roberta;PAGNONI, Antonella;PANCALDI, Simonetta
2010

Abstract

The response to molybdenum (Mo) was studied in the metal-tolerant hydrophyte Trapa natans L. Previously, it was shown that the plant accumulates Mn in the floating lamina by means of phenolic compounds and responded with acclimation responses of the chloroplast. Since the involvement of phenolics has been proposed also in Mo resistance, we tested the response of T. natans to increasing doses (5, 50, 150, 600 μM) of Mo using the photosynthetic apparatus as an indicator of cellular stress. Only 5 μM Mo did not cause evident modifications with respect to controls. Conversely, 50 to 600 μM Mo induced progressively marked alterations of the lamina morphology. The chloroplast ultrastructure showed disorganisation of the thylakoid system, and correspondingly, the photosynthetic pigment pattern was altered with a fall-down in photosynthesis. Microspectrofluorimetry indicated alterations of photosystem II, with differences among the three cell layers (first and second palisade and spongy tissues). While the highest dose caused plant death, 50 and 150 μM Mo-treated plants underwent partial recovery, and the plant survived up to the end of the vegetative season. However, reproduction was unsuccessful. Mo treatment did not induce increase in total phenolics, but only in anthocyanin. In contrast to Mn, detoxification of Mo by chelation inside vacuoles, possibly by anthocyanins, is suggested to be an insufficient mechanism to reduce Mo toxicity, which probably includes an impairement of nitrogen metabolism. However, the metal was accumulated in the lamina. On the whole, T. natans showed limited capabilities to survive Mo excess as compared with Mn.
2010
Baldisserotto, Costanza; Ferroni, Lorenzo; Zanzi, C.; Marchesini, Roberta; Pagnoni, Antonella; Pancaldi, Simonetta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1380586
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact