The present study concerns the percutaneous absorption of naproxen (NPX), as model anti-inflammatory drug, included in liposome formulations constituted of different lipids: stratum corneum lipids (SCL) and phosphatidylcholine/cholesterol (PC/CHOL). Liposome dispersions were produced using two different methods, namely reverse-phase evaporation (REV) and thin layer evaporation (TLE). Morphology and dimensions of the disperse phase were characterized by cryo-transmission electron microscopy (cryo-TEM) and photon correlation spectroscopy, respectively. X-ray diffraction was employed to determine the structural organization of the vesicles. In vitro diffusion was studied by Franz cell on liposome dispersions viscosized by carbomer. Tape stripping was performed to investigate in vivo the performance of differently composed liposomes as NPX delivery system. Cryo-TEM showed spherical vesicles and bigger irregular elongated nanoparticles for TLE SCL liposomes. REV resulted in spherical and elongated multilamellar vesicles. Also X-ray diffraction evidenced Lα or Lβ multilamellar vesicles for PC/CHOL and SCL liposome respectively. The in vitro study showed a lower NPX flux for SCL with respect to PC/CHOL liposome. Tape stripping corroborate the The in vitro findings regarding SCL, suggesting that liposomes create a drug reservoir mixing with SC physiological lipids, whilst PC/CHOL liposome promoted NPX permeation through the skin. Liposome lipid composition seems to affect NPX permeation through the skin.

Evaluation of percutaneous absorption of naproxen from different liposomal formulations

CORTESI, Rita;CONTADO, Catia;RAVANI, Laura;ESPOSITO, Elisabetta
2010

Abstract

The present study concerns the percutaneous absorption of naproxen (NPX), as model anti-inflammatory drug, included in liposome formulations constituted of different lipids: stratum corneum lipids (SCL) and phosphatidylcholine/cholesterol (PC/CHOL). Liposome dispersions were produced using two different methods, namely reverse-phase evaporation (REV) and thin layer evaporation (TLE). Morphology and dimensions of the disperse phase were characterized by cryo-transmission electron microscopy (cryo-TEM) and photon correlation spectroscopy, respectively. X-ray diffraction was employed to determine the structural organization of the vesicles. In vitro diffusion was studied by Franz cell on liposome dispersions viscosized by carbomer. Tape stripping was performed to investigate in vivo the performance of differently composed liposomes as NPX delivery system. Cryo-TEM showed spherical vesicles and bigger irregular elongated nanoparticles for TLE SCL liposomes. REV resulted in spherical and elongated multilamellar vesicles. Also X-ray diffraction evidenced Lα or Lβ multilamellar vesicles for PC/CHOL and SCL liposome respectively. The in vitro study showed a lower NPX flux for SCL with respect to PC/CHOL liposome. Tape stripping corroborate the The in vitro findings regarding SCL, suggesting that liposomes create a drug reservoir mixing with SC physiological lipids, whilst PC/CHOL liposome promoted NPX permeation through the skin. Liposome lipid composition seems to affect NPX permeation through the skin.
2010
C., Puglia; F., Bonina; Cortesi, Rita; E., Merlotti; M., Drechsler; P., Mariani; Contado, Catia; Ravani, Laura; Esposito, Elisabetta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1380305
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact