The description of a microencapsulation procedure for Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) is reported. The applied method is based on the generation of monodisperse droplets by a vibrational nozzle. An ionic alginate encapsulation procedure was utilized for the microbeads hardening. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. The produced barium-alginate microbeads were characterized by excellent morphological characteristics as well as a very narrow size distribution. The microencapsulation procedure did not alter the morphology and viability of the encapsulated WJMSCs. In addition, the current paper reports the functional properties, in term of secretive profiles of both free and encapsulated WJMSCs. The analyzed factors were members of the family of interleukins, chemokines, growth factors and soluble forms of adhesion molecules. These experiments showed that despite encapsulation, most of the proteins analyzed were secreted both by the free and encapsulated cells, even if in a different extent. In conclusion, the described encapsulation procedure represents a promising strategy to utilize WJMSCs for possible in vivo applications in tissue engineering and biomedicine.

Encapsulation of mesenchymal stem cells from Wharton's jelly in alginate microbeads

Penolazzi L.;Tavanti E.;Vecchiatini R.;Vesce F.;Gambari R.;Nastruzzi C.;Piva R.
2010

Abstract

The description of a microencapsulation procedure for Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) is reported. The applied method is based on the generation of monodisperse droplets by a vibrational nozzle. An ionic alginate encapsulation procedure was utilized for the microbeads hardening. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. The produced barium-alginate microbeads were characterized by excellent morphological characteristics as well as a very narrow size distribution. The microencapsulation procedure did not alter the morphology and viability of the encapsulated WJMSCs. In addition, the current paper reports the functional properties, in term of secretive profiles of both free and encapsulated WJMSCs. The analyzed factors were members of the family of interleukins, chemokines, growth factors and soluble forms of adhesion molecules. These experiments showed that despite encapsulation, most of the proteins analyzed were secreted both by the free and encapsulated cells, even if in a different extent. In conclusion, the described encapsulation procedure represents a promising strategy to utilize WJMSCs for possible in vivo applications in tissue engineering and biomedicine.
2010
Penolazzi, L.; Tavanti, E.; Vecchiatini, R.; Lambertini, E.; Vesce, F.; Gambari, R.; Mazzitelli, S.; Mancuso, F.; Luca, G.; Nastruzzi, C.; Piva, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1378217
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 48
social impact