We consider the global Cauchy problem for an evolution equation which models an Euler-Bernoulli vibrating beam with time dependent elastic modulus under a force linear function of the displacement u, of the slope u_x, of u_xx and u_xxx. These two last derivatives are proportional to the bending moment and to the shear respectively. We show results of well-posedness in Sobolev spaces assuming that the coefficient of the shear term has a decay rate |x|^(-a), a greater or equal to 1, as x goes to infinity and that all the coefficients of u_x,u_xx and u_xxx satisfy suitable Levi conditions if we allow the elastic modulus to vanish at some time t=t_0.

The global Cauchy problem for a vibrating beam equation

ASCANELLI, Alessia;
2009

Abstract

We consider the global Cauchy problem for an evolution equation which models an Euler-Bernoulli vibrating beam with time dependent elastic modulus under a force linear function of the displacement u, of the slope u_x, of u_xx and u_xxx. These two last derivatives are proportional to the bending moment and to the shear respectively. We show results of well-posedness in Sobolev spaces assuming that the coefficient of the shear term has a decay rate |x|^(-a), a greater or equal to 1, as x goes to infinity and that all the coefficients of u_x,u_xx and u_xxx satisfy suitable Levi conditions if we allow the elastic modulus to vanish at some time t=t_0.
2009
Ascanelli, Alessia; M., Cicognani; F., Colombini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1377366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact