In this work we consider an inverse ill-posed problem coming from the area of dynamic magnetic resonance imaging (MRI), where high resolution images must be reconstructed from incomplete data sets collected in the Fourier domain. The reduced-encoding imaging by generalized-series reconstruction (RIGR) method used leads to illconditioned linear systems with Hermitian Toeplitz matrix and noisy right-hand side. We analyze the behavior of some regularization methods such as the truncated singular value decomposition (TSVD), the Lavrent’yev regularization method and conjugate gradients (CG) type iterative methods. For what concerns the choice of the regularization parameter, we use some known methods and we propose new heuristic criteria for iterative regularization methods. The simulations are carried on test problems obtained from real data acquired on a 1.5 T Phillips system.

Regularization methods in dynamic MRI

ZANGHIRATI, Gaetano;
2002

Abstract

In this work we consider an inverse ill-posed problem coming from the area of dynamic magnetic resonance imaging (MRI), where high resolution images must be reconstructed from incomplete data sets collected in the Fourier domain. The reduced-encoding imaging by generalized-series reconstruction (RIGR) method used leads to illconditioned linear systems with Hermitian Toeplitz matrix and noisy right-hand side. We analyze the behavior of some regularization methods such as the truncated singular value decomposition (TSVD), the Lavrent’yev regularization method and conjugate gradients (CG) type iterative methods. For what concerns the choice of the regularization parameter, we use some known methods and we propose new heuristic criteria for iterative regularization methods. The simulations are carried on test problems obtained from real data acquired on a 1.5 T Phillips system.
2002
LOLI PICCOLOMINI, E.; Zama, F.; Zanghirati, Gaetano; Formiconi, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1211198
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact