This paper deals with the problem of determining, by proper stress analyses, the stress fields near arc-welded joint toes and the use of such distributions in fatigue strength predictions. In particular, the relationships between the local stress field and the structural (geometrical) stress field are investigated under the hypothesis that highly stressed zones remain under linear elastic conditions. The local stress distribution is given for different joints in terms of the relevant notch stress intensity factors (NSIFs), having modelled their weld beads like re-entrant sharp corners. The structural stress distribution is, in contrast, the stress field linearly distributed through the thickness of the welded plates (and sometimes on the plate surfaces), beyond the zone affected by local effects due to the beads. The aim of the proposed methodology is to provide an explicit link between NSIF values and structural stress at a well-defined distance from the weld toe. Such a distance is chosen equal to the main plate thickness. The expressions obtained allow a direct comparison with the well-known `hot-spot stress' approach; it is demonstrated that there are circumstances of practical interest in which the usual hot-spot stress (which is the simple linear extrapolation at the weld root of the structural field) is not able to predict accurately the fatigue behaviour of the joints, whereas the combination of structural field and NSIF-based field is more advantageous. The complete methodology can be simplified for rapid calculations involving weldments of different types. Some examples are also reported and discussed.

Relationships between local and structural stress in the evaluation of the weld toe stress distribution

TOVO, Roberto;LAZZARIN, Paolo
1999

Abstract

This paper deals with the problem of determining, by proper stress analyses, the stress fields near arc-welded joint toes and the use of such distributions in fatigue strength predictions. In particular, the relationships between the local stress field and the structural (geometrical) stress field are investigated under the hypothesis that highly stressed zones remain under linear elastic conditions. The local stress distribution is given for different joints in terms of the relevant notch stress intensity factors (NSIFs), having modelled their weld beads like re-entrant sharp corners. The structural stress distribution is, in contrast, the stress field linearly distributed through the thickness of the welded plates (and sometimes on the plate surfaces), beyond the zone affected by local effects due to the beads. The aim of the proposed methodology is to provide an explicit link between NSIF values and structural stress at a well-defined distance from the weld toe. Such a distance is chosen equal to the main plate thickness. The expressions obtained allow a direct comparison with the well-known `hot-spot stress' approach; it is demonstrated that there are circumstances of practical interest in which the usual hot-spot stress (which is the simple linear extrapolation at the weld root of the structural field) is not able to predict accurately the fatigue behaviour of the joints, whereas the combination of structural field and NSIF-based field is more advantageous. The complete methodology can be simplified for rapid calculations involving weldments of different types. Some examples are also reported and discussed.
1999
Tovo, Roberto; Lazzarin, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1210380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 41
social impact