This paper presents a theoretical characterization of nonlinear distortion effects in orthogonal frequency division multiplexing (OFDM) transmission systems. In the theoretical framework developed, it is shown that the effects on the decision variables of the in-band distortion introduced by a bandpass memoryless nonlinearity can be described by means of a complex gain and an additive Gaussian term with zero mean and suitable variance; analytical expressions for gain and variance are given. The conditions which allow this description are emphasized and discussed. As a consequence, a completely analytical procedure to evaluate error probability is also obtained and illustrated using OFDM/discrete multitone modulation (DMT) systems with rectangular pulse shaping; for the soft-envelope limiter nonlinearity, a closed form is derived. A comparison with simulation results is carried out to verify the accuracy of this method.
A theoretical characterization of non-linear distortion effects in OFDM systems
TRALLI, Velio;
2000
Abstract
This paper presents a theoretical characterization of nonlinear distortion effects in orthogonal frequency division multiplexing (OFDM) transmission systems. In the theoretical framework developed, it is shown that the effects on the decision variables of the in-band distortion introduced by a bandpass memoryless nonlinearity can be described by means of a complex gain and an additive Gaussian term with zero mean and suitable variance; analytical expressions for gain and variance are given. The conditions which allow this description are emphasized and discussed. As a consequence, a completely analytical procedure to evaluate error probability is also obtained and illustrated using OFDM/discrete multitone modulation (DMT) systems with rectangular pulse shaping; for the soft-envelope limiter nonlinearity, a closed form is derived. A comparison with simulation results is carried out to verify the accuracy of this method.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.