Originally developed for fast solving multi-particle problems, the fast Gauss transform (FGT) is here applied to non-local finite element models of integral type (FEFGT). The focus is on problems requiring fine geometry discretization, as in the case of solutions that exhibit high gradients or boundary layers. As shown by one- and two-dimensional examples, the FEFGT algorithm combines the robustness of the finite element method with the outstanding computational efficiency of the FGT.

The fast Gauss transform for non-local integral FE models

BENVENUTI, Elena;TRALLI, Antonio Michele
2006

Abstract

Originally developed for fast solving multi-particle problems, the fast Gauss transform (FGT) is here applied to non-local finite element models of integral type (FEFGT). The focus is on problems requiring fine geometry discretization, as in the case of solutions that exhibit high gradients or boundary layers. As shown by one- and two-dimensional examples, the FEFGT algorithm combines the robustness of the finite element method with the outstanding computational efficiency of the FGT.
2006
Benvenuti, Elena; Tralli, Antonio Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1210041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact