We consider a second order weakly hyperbolic equation with coefficients depending both on time and space. We assume the coefficients of the equation to have some kind of Hoelder behavior with respect to time, and we add for the coefficients of the lower order terms an appropriate Levi condition. We prove Gevrey well posedness of the Cauchy problem for this equation for a small enough Gevrey index.

Gevrey well posedness for a second order weakly hyperbolic equation with non regular in time coefficients

ASCANELLI, Alessia
2006

Abstract

We consider a second order weakly hyperbolic equation with coefficients depending both on time and space. We assume the coefficients of the equation to have some kind of Hoelder behavior with respect to time, and we add for the coefficients of the lower order terms an appropriate Levi condition. We prove Gevrey well posedness of the Cauchy problem for this equation for a small enough Gevrey index.
2006
Ascanelli, Alessia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1208893
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact