Most neuroblastoma cell lines do not express apical caspases 8 and 10, which play a key role in mediating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity in a variety of malignant cell types. In this study, we demonstrated that TRAIL induced a moderate but significant increase of apoptosis in the caspase 8/10-deficient SK-N-SH neuroblastoma cell line, through activation of a novel caspase 9/7 pathway. Concomitant to the induction of apoptosis, TRAIL also promoted a significant increase of prostaglandin E2 (PGE2) release by SK-N-SH cells. Moreover, coadministration of TRAIL plus indomethacin, a pharmacological inhibitor of cyclooxygenase (COX), showed an additive effect on SK-N-SH cell death. In spite of the ability of TRAIL to promote the phosphorylation of both ERK1/2 and p38/MAPK, which have been involved in the control of COX expression/activity, neither PD98059 nor SB203580, pharmacological inhibitors of the ERK1/2 and p38/MAPK pathways, respectively, affected either PGE2 production or apoptosis induced by TRAIL. Finally, both induction of apoptosis and PGE2 release were completely abrogated by the broad caspase inhibitor z-VAD-fmk, suggesting that both biologic end points were regulated in SK-N-SH cells through a caspase 9/7-dependent pathway.
TRAIL activates a caspase 9/7-dependent pathway in caspase 8/10-defective SK-N-SH neuroblastoma cells with two functional end-points: induction of apoptosis and PGE2 release.
ZAULI, Giorgio;MILANI, Daniela;RIMONDI, Erika;SECCHIERO, Paola
2003
Abstract
Most neuroblastoma cell lines do not express apical caspases 8 and 10, which play a key role in mediating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity in a variety of malignant cell types. In this study, we demonstrated that TRAIL induced a moderate but significant increase of apoptosis in the caspase 8/10-deficient SK-N-SH neuroblastoma cell line, through activation of a novel caspase 9/7 pathway. Concomitant to the induction of apoptosis, TRAIL also promoted a significant increase of prostaglandin E2 (PGE2) release by SK-N-SH cells. Moreover, coadministration of TRAIL plus indomethacin, a pharmacological inhibitor of cyclooxygenase (COX), showed an additive effect on SK-N-SH cell death. In spite of the ability of TRAIL to promote the phosphorylation of both ERK1/2 and p38/MAPK, which have been involved in the control of COX expression/activity, neither PD98059 nor SB203580, pharmacological inhibitors of the ERK1/2 and p38/MAPK pathways, respectively, affected either PGE2 production or apoptosis induced by TRAIL. Finally, both induction of apoptosis and PGE2 release were completely abrogated by the broad caspase inhibitor z-VAD-fmk, suggesting that both biologic end points were regulated in SK-N-SH cells through a caspase 9/7-dependent pathway.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.