SPARC (secreted protein, acidic and rich in cysteine) is a glycoprotein of the extracellular matrix that mediates the cell-matrix interactions. It plays also a role in angiogenesis, tumorigenesis, caractogenesis and wound healing. The human SPARC consists of three distinct modules. Module II is follistatin-like and its hydrolysis gives rise to a number of oligopeptides that can regulate angiogenesis in vivo and the biological activity of which has been related to their association with endogenous or exogenous copper ion. In order to completely understand the biological role of metal complexes formed by SPARC and its fragments, more information is needed on their stoichiometry, stability and structure in solution. In the present paper a potentiometric and spectroscopic investigation on Cu(II) complexes with the three SPARC122–126 , SPARC121–126 and SPARC120–126 fragments, protected at both their amino and carboxylic ends, is reported. These peptides (Ac-HKLHL-NH2 , Ac-GHKLHL-NH2 and Ac-KGHKLHL-NH2 , respectively) constitute good models for the strong copper-binding site of the protein. The behaviour of the three ligands is very similar: complex formation is started by the two His residues, subsequently involving up to three amido nitrogens, as pH increases. The coordination of the two histydyl imidazoles promotes amide ionization in the physiological pH range and this can explain SPARC binding to the Cu(II) ion.

Cu(II) ion coordination to SPARC: a model study on short peptide fragments

REMELLI, Maurizio;CONATO, Chiara;
2003

Abstract

SPARC (secreted protein, acidic and rich in cysteine) is a glycoprotein of the extracellular matrix that mediates the cell-matrix interactions. It plays also a role in angiogenesis, tumorigenesis, caractogenesis and wound healing. The human SPARC consists of three distinct modules. Module II is follistatin-like and its hydrolysis gives rise to a number of oligopeptides that can regulate angiogenesis in vivo and the biological activity of which has been related to their association with endogenous or exogenous copper ion. In order to completely understand the biological role of metal complexes formed by SPARC and its fragments, more information is needed on their stoichiometry, stability and structure in solution. In the present paper a potentiometric and spectroscopic investigation on Cu(II) complexes with the three SPARC122–126 , SPARC121–126 and SPARC120–126 fragments, protected at both their amino and carboxylic ends, is reported. These peptides (Ac-HKLHL-NH2 , Ac-GHKLHL-NH2 and Ac-KGHKLHL-NH2 , respectively) constitute good models for the strong copper-binding site of the protein. The behaviour of the three ligands is very similar: complex formation is started by the two His residues, subsequently involving up to three amido nitrogens, as pH increases. The coordination of the two histydyl imidazoles promotes amide ionization in the physiological pH range and this can explain SPARC binding to the Cu(II) ion.
2003
Remelli, Maurizio; Luczkowski, M; Bonna, Am; Mackiewicz, Z; Conato, Chiara; Kozlowski, H.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1208088
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact